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ABSTRACT
The emission of intense radio pulses by flaring magnetars is investigated. Small-scale current gradients can be
imprinted into a strongly magnetized outflow by the same processes that source fireball radiation in the closed
magnetosphere. This structure arises from a combination of crustal yielding, internal tearing, and turbulent cascade.
We consider the quasi-linear development of weak, small-scale currents as (i) they are stretched out and frozen by
relativistic expansion and then (ii) pass through a shock. In particular, we derive the amplitudes of the ordinary and
fast waves that emerge downstream of a relativistic, magnetized shock in response to a mode that is frozen into the
upstream flow (a frozen Alfvén wave or entropy wave). An upstream mode with comoving wavelength exceeding the
skin depth can linearly convert to a secondary mode propagating above the plasma frequency. A simple and accurate
treatment of shocks with extreme magnetization is developed, and the formation of internal shocks in the outflow
from a bursting, rotating magnetar is outlined. The emission process described here does not require a strong shock
or cool e± pairs (in contrast with the electromagnetic maser shock instability). In some cases, a high-frequency
wave is reflected back to the observer, but with a minuscule amplitude that makes it subdominant to other emission
channels. The dominant secondary electromagnetic mode is superluminal at emission, is subject to weak induced
scattering within the outflow, and can reach the observer in the radio band.

1 INTRODUCTION

The emission of a bright burst of ∼ 10 cm radiation by a rel-
ativistic outflow from a magnetar poses a challenging prob-
lem in multi-scale plasma physics. This general approach to
the emission of a fast radio burst (FRB) has received signifi-
cant attention in recent years (see Lyubarsky 2014, 2020; Be-
loborodov 2017; Plotnikov & Sironi 2019; Metzger et al. 2019;
Sironi et al. 2021; Mahlmann et al. 2022, and Lyubarsky 2021
for a detailed review). The radio wavelength is a tiny frac-
tion of the width of the outflow, even one lasting for the brief
duration of a millisecond.
This paper is based on the observation that the bright

X-ray bursts produced by magnetars provide independent
evidence for the emergence of small-scale structure in the
magnetic field. Energy transfer to radiating electrons and
positrons is mediated by high-wavenumber current pertur-
bations (Thompson 2008; Thompson & Gill 2014; Nättilä &
Beloborodov 2022). On occasion, strongly magnetized plasma
in this perturbed state may be ejected from a magnetar. The
perturbations are composed of subluminal plasma modes that
are highly elongated along the magnetic field and, therefore,
are easily frozen by relativistic expansion.
Here, we investigate the linear interaction of such a frozen

Alfvén mode or entropy mode with a caustic (shock) form-
ing in the outflow. The seed mode is partly converted to
an electromagnetic mode that can escape as a radio wave.
This effect has previously been demonstrated in the case of
very rapid plasma expansion: there is efficient linear conver-

sion from a subluminal to a superluminal mode when the
plasma skin depth c/ωp expands beyond the size of the frozen
mode (Thompson 2017). We show that the interaction with a
highly-magnetized shock wave has a similar effect: the mode
shrinks compared with the skin depth as the plasma passes to
the downstream side and develops a dynamic electromagnetic
component.
This emission channel is shown to be competitive with a

synchrotron maser operating at the same shock (e.g. Plot-
nikov & Sironi 2019; Sironi et al. 2021), and will dominate
when the magnetization is very high or the upstream parti-
cles are relativistically warm. The radio wave naturally has
a high degree of linear polarization, which tends to be or-
thogonal to that produced by the maser. The outgoing wave
amplitude is proportional to the amplitude of frozen turbu-
lence advected with the relativistic outflow; the non-linearity
is in the background flow.
It is interesting to note that evidence for such advected

structure in the wind from a magnetically active star comes
from a very different, and independent, direction: measure-
ments of high-wavenumber Alfvénic disturbances and current
sheets in the Solar wind by the Parker Solar Probe (e.g. Bale
et al. 2019). Related structures may also form in other rela-
tivistic outflows from compact stars.
This work is motivated by the detection of two closely

spaced radio bursts of luminosity ∼ 1037 erg s−1 from a
Galactic magnetar SGR 1935+2154 (CHIME/FRB Collab-
oration et al. 2020; Bochenek et al. 2020). This source pro-
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2 C. Thompson

duced many X-ray bursts that showed no detectable radio
emission (Lin et al. 2020a); the radio-emitting burst was not
conspicuously bright but somewhat harder spectrally than
most (Younes et al. 2021).
The required small-scale magnetospheric structure can be

generated by yielding along a fault-like structure in the
magnetar crust, combined with the excitation of small-scale
modes by a current-driven instability in the magnetosphere
(Thompson & Duncan 2001; Parfrey et al. 2013; Thompson
et al. 2017; Chen & Beloborodov 2017). We posit that ra-
dio emission is associated with an electromagnetic explosion
that arises when fault slippage extends close to one of the
magnetic poles.
Alternatively, an elastic excitation of the crust can gener-

ate an escaping electromagnetic pulse that is accompanied
by a secondary plasmoid instability near the Alfvén surface
(see the force-free electrodynamics simulations of Yuan et al.
2020, 2022). The volume-filling spectrum of magnetic modes
that we posit is a more natural consequence of a current-
driven instability driven by volumetric shear. Twisting of the
magnetic field near the pole is sufficient to generate a ∼ 1041

erg s−1 electromagnetic pulse, as is required in the case of
SGR 1935+2154. A giant magnetar flare may involve the
reconnection-driven ejection of a much larger plasmoid (Lyu-
tikov 2006); this opens up the possibility that significantly
brighter radio bursts are produced by the same mechanism
we describe, but in much more energetic events.

1.1 Related Proposals

Small-scale electromagnetic fast modes are naturally pro-
duced by a maser instability when e± pairs encounter a for-
ward shock wave (Gallant et al. 1992; Lyubarsky 2014; Be-
loborodov 2017; Plotnikov & Sironi 2019; Metzger et al. 2019;
Sironi et al. 2021), or when a compressive disturbance in-
tersects the strong current sheet carried out by the pulsar
wind (Lyubarsky 2020; Mahlmann et al. 2022). In contrast
with the maser instability (Babul & Sironi 2020), the mecha-
nism described in this paper operates efficiently when the e±

are relativistically warm and the magnetization (the ratio of
Maxwell stress to plasma enthalpy, σ = B2/4πw) is large.
The emission of fast modes by magnetic islands forming at

a dynamic current sheet has been shown to be a promising
mechanism for generating giant radio pulses (Philippov et al.
2019). The current sheet formed outside the corotating mag-
netosphere, which has a negligible guide magnetic field, has
been implicated in particular (Lyubarsky 2020; Mahlmann et
al. 2022). We note that the existing simulations of the process
must be extrapolated by several orders of magnitude in scale
to accommodate the 6-7 decade separation between the ra-
dio wave and the low-frequency strong electromagnetic wave
emitted by a rotating neutron star. The decay rate of the
fast mode power generated at a current sheet over timescales
large compared with the plasma timescale has not yet been
determined.
Several numerical simulations have already described the

spectrum of magnetic fluctuations generated in a turbulent,
relativistic plasma with a strong guide field (Ripperda et al.
2021; Chernoglazov et al. 2021); in that case fast mode emis-
sion tends to be suppressed on small scales by the elongation
of colliding Alfvénic wavepackets. It is possible that this effi-

ciency is greater when the plasma contains a mixture of guide
fields with opposing signs.
An additional consequence of our analysis is that a strongly

magnetized shock is an inefficient reflector of upstream per-
turbations. The flow remains relativistic on both sides of the
shock, which substantially weakens the oppositely directed
reflected wave. Reflection by a very thin and dense plasma
shell can transform spatial structure in the upstream mag-
netic field to frequency structure in the reflected wave, but
only if the relativistic shell is too thin for a shock to form
(Thompson 2017). This contradicts a recent claim that the
rotational modulation of the magnetic field in a pulsar wind
can be transformed to a radio wave by reflection at a shock
(Yalinewich & Pen 2022).
The principal alternative possibility, that some FRBs orig-

inate in the corotating magnetospheres of neutron stars, re-
mains open at present but is subject to controversy (Be-
loborodov 2021b; Qu et al. 2022; see Lyubarsky 2021 for an
overview of these models).

1.2 Summary of Results and Plan of the Paper

We begin in Section 2 by reviewing potential sources of high-
wavenumber magnetic modes, including (i) a turbulent cas-
cade triggered by current-driven instability in zones of strong
magnetic shear (ii) distributed magnetic tearing involving the
interaction of multiple tearing surfaces, similar to what is
observed during current relaxation in tokamaks; and (iii) di-
rect injection of small-scale currents in concentrated yielding
zones.
Then in Section 3 we describe how Alfvénic wavepackets

and current sheets are stretched out along the toroidal mag-
netic field of an escaping electromagnetic pulse. Modes with
non-radial polarization δB preserve their energy and radial
wavevector k⊥ (in the frame of the star) even as the non-
radial wavevector k‖ decays, thereby freezing the oscillation.
The frequency of an electromagnetic wave produced by a
collision of such a frozen mode with a shock is ω ∼ ck⊥.
(The Alfvén speed approaches the speed of light c when the
energy density is dominated by the electromagnetic field.)
The net result is that a spectrum of frozen modes with size
k−1
⊥ ∼ 10−6 c∆t in an electromagnetic pulse of duration ∆t

carries energy (δB)2/8π ∝ k1−α
⊥ (α = 3/2− 5/3) and so may

seed escaping radiation with an efficiency ∼ 10−3 − 10−4.
Section 4 outlines the pairing of upstream, downstream and

reflected modes. We focus on modes with comoving wavevec-
tor comparable to the inverse skin depth, k̃ ∼ ωp/c; the down-
stream mode is compressed compared with the downstream
skin depth and develops a dynamic electromagnetic compo-
nent. An upstream frozen Alfv’en mode is polarized perpen-
dicular to the mean magnetic field, and excites the ordinary
wave (O-mode) downstream of the shock. The position of the
shock is unperturbed to linear order, and the reflected model
is absent.
By contrast, an isobaric mode is polarized δB ∝ B and

therefore involves finite density and pressure perturbations. A
linear oscillation of the shock is excited and a fast magnetohy-
drodynamic wave (extraordinary mode or X-mode) is excited
downstream. The frequency and amplitude of the reflected
X-mode, as measured in the frame of the shock, are limited
significantly by the opposing relativistic motion across the
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shock. In general, the fast mode emission by the maser insta-
bility strong dominates the reflected extraordinary wave.
Section 5 presents the full analysis of linear perturba-

tions of a strongly magnetized shock. We begin by review-
ing the shock jump conditions, obtaining simple analytic re-
sults in the regime of large magnetization but arbitrary shock
strength. These generalize the analytic results previously ob-
tained by Kennel & Coroniti (1984) and Zhang & Kobayashi
(2005), which apply to a strong shock with arbitrary magneti-
zation. Then we obtain linear relations between an upstream
frozen Alfvén mode and a downstream ordinary wave, and
between an upstream isobaric mode and a downstream ordi-
nary wave.
Section 6 generalizes the standard four-zone model of col-

liding relativistic shells to the case where both shells have ex-
treme magnetization. The finite strength of the forward shock
is described in terms of the parameter S = (Linner/Louter)

1/4

of the inner and outer shells, and an analytic two shell model
is developed. The wave amplitudes obtained in Section 5 in
the frame of the shock are boosted to the frame of the ob-
server.
Section 7 describes the acceleration of relativistic shells

with initial magnetization σ ∼ 105 − 106 that pass through
an initial fireball phase and estimates the radius and which
the passage of forward and reverse shocks through the shells
is completed. The interaction of the outer shell with a (much
less luminous) rotationally-driven magnetized wind is investi-
gated. It is shown that the inhomogeneous acceleration of the
E ×B frame driven by the internal spreading of an isolated
shell plays an important role in determining this interaction
and the deceleration of the outermost luminous shell, and the
distance over which a second shell will interact with it.
The wave amplitudes and frequencies obtained in Section

6 are evaluated in the context of this collision model. The
output in O-mode photons is shown to easy dominate over
the intrinsic X-mode maser emission at the same shock. We
also offer some conjectures about these output parameters
will depend on the energy of the magnetar burst.
Three Appendices detail (i) the derivation of the shock

jump at high magnetization, (ii) useful relations between
mode variables for the four relevant plasma eigenmodes, and
(iii) the same relations between mode variables as evaluated
in the frame of the shock.
Throughout this paper, the shorthand X = Xn × 10n

records the value of a quantity in c.g.s. units. The Landau
excitations of electrons become relativistic in magnetic fields
stronger than BQ = m2

ec
3/e~ = 4.4 × 1013 G, where mec

2 is
the electron rest energy and e the magnitude of the electron
charge.

2 SMALL-SCALE CURRENTS IN MAGNETAR
FLARES

Magnetars occasionally produce brief bursts of X-rays, most
commonly with ∼ 0.1 s duration and energy . 1041 erg, but
also extending to higher energy and longer duration. The X-
ray spectra of these bursts frequently show a quasi-thermal
cutoff above ∼ 40 keV (e.g. Lin et al. 2020b; Kaneko et
al. 2021). Emission from a dense plasma, which is optically
thick to electron-photon scattering and experiences strong
photon splitting in one polarization mode, provides a con-

cise explanation for this basic feature of the X-ray spectra
(Thompson & Duncan 1995); emission from a more spatially
extended and dilute pair plasma tends to have a somewhat
higher peak energy (Thompson & Duncan 2001; Beloborodov
2021a). Bursts of intermediate-to-large energy have smooth
light curves that are modulated by the rotation of the star,
pointing to the presence of a ‘trapped fireball’ that persists
beyond the main heating process (Feroci et al. 2001).
Efficient heating of the radiating charges appears to depend

on the presence of high-wavenumber current perturbations.
In effect, magnetar X-ray bursts involve the transfer of mag-
netic energy from large (∼ km) scales, where the dynamic
plasma behaves similarly to a magnetofluid, to much smaller
scales where a fluid description breaks down. The fastest
channels of energy transfer from the electromagnetic field to
the e± involve either charge starvation of small-scale currents,
or Landau damping of strongly sheared Alfvén waves on the
particle motion along B (Thompson 2008; Thompson & Gill
2014; Nättilä & Beloborodov 2022). Charge starvation sets in
when the current demanded of the plasma exceeds the maxi-
mum that can be supplied by conduction, namely δJ > en±c
in a e± gas of density n±. Shear Alfvén waves experience
Landau damping off strongly magnetized e± when the mode
phase speed vA ' c(1 + k2

⊥c
2/ω2

p)−1/2 drops significantly be-
low the speed of light, at wavenumber k⊥ & ωp/c. Here ωp is
the plasma frequency.
Importantly, the damped modes are much smaller than the

plasma size, but also much larger than the microscopic Lan-
dau orbital of an electron.1

A broad spectrum of current fluctuations is naturally gen-
erated by a cascade process. In the application made in this
paper, the wavenumber |k⊥| of the damped modes must ex-
ceed the wavenumber of escaping electromagnetic modes. A
concrete example involving the ejection of a strongly mag-
netized e± fireball is worked out, demonstrating that this
condition is easily satisfied for radio waves.

2.1 Forcing of Small-Scale Magnetospheric Currents

Two related proposals have been made about this cascade
process. The starting point is the injection of strong, local-
ized shear into the magnetosphere, most naturally by dis-
placement along extended fault-like structures (Thompson &
Duncan 2001; Parfrey et al. 2013; Thompson et al. 2017; Chen
& Beloborodov 2017). Evidence for concentrated magnetic
shear comes from the detection of localized high-temperature
emission in the afterglow of magnetar bursts (Kaspi & Be-
loborodov 2017). Although mathematical discontinuities in
the crustal strain field imply diverging internal magnetic
shear energy (Levin & Lyutikov 2012), the thin-shell geome-
try of the magnetar crust2 can support fault-like features with
a small but finite width. A time-dependent elastic-plastic-
thermal model shows that a horizontal ∼ 1015 G magnetic

1 The electron gyroscale rg ∼ σ−1/2c/ωp in magnetic fields weaker
than BQ.
2 Most of the solid strength of the magnetar crust is concentrated
near its base in a layer of sub-km thickness. Global stressing of
such a thin elastic shell to the point of yielding – most naturally
by the evolving core magnetic field – generically produces fault-like
structures.
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4 C. Thompson

field thickens the faults but does not suppress them (Thomp-
son et al. 2017).
(1) The cascade could be mediated by dynamic current

perturbations (Alfvén waves) that are excited by a current-
driven instability – for example, the exchange reconnection
process that has been inferred to drive Alfvénic modes in the
Solar wind (Bale et al. 2022) – or, alternatively, by small-scale
structure in the crustal yielding pattern (Section 2.3). These
modes collide and cascade to high wavenumber (Thompson
& Blaes 1998; TenBarge et al. 2021; Nättilä & Beloborodov
2022). Here, the collision time is comparable to the mode
period. The conservation of energy flux through k-space im-
plies (δB)2ω = constant, where ω = ck · B̂ = ck‖ is the mode
frequency. The Alfvén waves become increasingly elongated
over wavenumber and one obtains a magnetic spectrum

δB2 ∝ |k⊥|1−α. (1)

Here k⊥ = |k × B̂| is the component of k perpendicular to
B. The index α has been variously estimated to lie in the
range 5/3 (Goldreich & Sridhar 1995) to 3/2 (Boldyrev 2005;
Chernoglazov et al. 2021). The corresponding spectrum of
current perturbations is

δJ ∝ k2/3
⊥ − k3/4

⊥ . (2)

In the case of a strong electromagnetic pulse loaded with
a quasi-thermal photon-pair gas, charge starvation is found
to set in near the critical wavenumber for Landau damping,
k⊥ ∼ ωp/c (see Equation (3) below).
(2) The sheared magnetosphere supporting an inhomoge-

neous current is susceptible to relatively slow, small-scale
magnetic tearing. This instability feeds off local extrema in
the profile of magnetic twist and involves multiple interacting
tearing surfaces, in close analogy to the anomalous process
that redistributes magnetic twist in a tokamak (White 2013;
Thompson 2022). These tearing surfaces may be spaced by
a distance as small as the magnetospheric skin depth. The
instability growth rate is s ∼ 4πδJ/B, where δJ is closely
aligned with the magnetic field. Large-scale magnetic shear
can generate structure on scales down to the skin depth, as
is seen in the structure of the linear eigenmodes.
In the non-relativistic case, explosive small-scale reconnec-

tion is seen to be triggered by the collision of tearing surfaces
of opposing signs (Ishii et al. 2002; Bierwage et al. 2005); re-
lated phenomena have been seen in relativistic kinetic simula-
tions (Nalewajko et al. 2016). It is possible that a cascade-like
process develops, now with the quantity s(δB)2 conserved in
k-space. From this, one deduces a spectrum of current per-
turbations similar to Equation (1), (δB)2 ∝ k−2/3.
The most important feature emerging from both of these

processes is the formation of magnetic perturbations that are
(i) elongated along the magnetic field and (ii) carry energy
that decreases relatively slowly with the decreasing size of
the perturbation perpendicular to the magnetic field. For ex-
ample, the scaling α = 3/2 in Equation (1) implies that per-
turbations of wavelength ∼ 10 cm could carry ∼ 10−4−10−3

of the energy when a magnetar ejects a relativistically mag-
netized shell of thickness c∆t ∼ 300 km.

2.2 High-Wavenumber Cutoff

If the current fluctuations advected out by a strong electro-
magnetic pulse are to be a viable seed for escaping radio

waves of frequency ν, then their spectrum must extend at
least to a wavenumber |k⊥| > 2πν/c.
To check that constraint is satisfied, we consider a source

zone comprised of a magnetic flux bundle anchored near the
magnetic pole of the star and extending to a radius r which
might exceed 10 stellar radii R. The specific example we con-
sider is an Alfvénic cascade. This dynamic flux bundle even-
tually breaks open as a result of the build-up of plasma pres-
sure and continued twisting by the crust – but not before
non-linear interactions by the Alfvén waves have generated
a broad power-law spectrum of modes and heated the em-
bedded pairs sufficiently to generate an optically thick and
quasi-thermal e±-photon plasma.
The mode wavenumber |k⊥|max at which charge starvation

sets in can be expressed in terms of the local magnetic field
B ∼ Bp(r/R)−3 near the top of the flux bundle, the scatter-
ing depth τT ∼ neσTr in the same zone, and the amplitude of
the magnetic fluctuation at the stirring scale δB0 (see Equa-
tion (87) of Thompson & Gill 2014),(

|k⊥|max c

ωp

)2

∼ λ̄c
r

(
3τT

2αem

)(1+α)/(3−α)

×
[
B(r)

BQ

]−4/(3−α)(
δB0

B

)−2

. (3)

Here, Bp is the polar magnetic field strength, α is the spec-
tral index (Equation (1)) and αem ' 1/137 the fine-structure
constant. We express δB in terms of a Poynting luminosity
LP ∼ δB2

0(ΩP/4π)r2c radiated into a solid angle ΩP near the
top of the flux bundle. The charge-starvation scale is found
to sit close to the skin depth; for a spectral index α = 3/2,

|k⊥|maxc

ωp
∼ 0.6

(ΩPR6)1/2 τ
5/6
T,1

L
1/2
P,42

×
(

Bp
10BQ

)−1/3 ( r

30R

)3/2

. (4)

Here, the luminosity has been normalized to a bright Soft
Gamma Repeater burst. The choice of scattering depth,
τT ∼ 10, corresponding to a quasi-thermal plasma with a high
compactness σTLP/ΩPmec

3r and effective temperature too
low (Teff . 20 keV) for the spectrum to relax to a blackbody
distribution (Thompson & Gill 2014; Beloborodov 2021a).
For example, in this situation,

Teff =

(
LP

σSBΩPr2

)1/4

= 5.7
L

1/4
P,42

Ω
1/4
P R

1/2
6

( r

30R

)−1/2

keV.

(5)

A similar value of τT would apply to plasma that experi-
ences a temporary surge in pair creation due to non-thermal
particle acceleration, followed by a relaxation of heating and
passive electron-positron annihilation.
The corresponding plasma frequency is comfortably high

enough to seed lower-frequency radiation at greater distances
from the magnetar, where the plasma has been diluted by
expansion,

ωp(r)

2π
= 6.4× 1012 τ

1/2
T,1

R
1/2
6

( r

30R

)−1/2

Hz. (6)
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∆
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Figure 1. Continuous plastic flow with speed vpl(y) along a fault-
like feature of finite width ∆ ∼ 0.1−0.3 km in the magnetar crust.
This flow drives a longitudinal component Bx of the magnetic field,
a vertical current J = Jz ẑ ∼ (B/4π)∂yvpl ẑ, and a vertical Poynt-
ing flux SP ∼ (v2

pl/4πc)B
2 ẑ. Here, the background magnetic field

is B = Bẑ and By = 0. The plastic flow rate has a strong non-
linear dependence on applied stress (Chugunov & Horowitz 2010),
with the interesting consequence that small-scale structure in the
crustal Maxwell stress may be imprinted in the flow rate and the
magnetospheric current.

2.3 Direct Injection of Currents at Crustal Faults

Yielding of the magnetar crust provides an interesting direct
source of small-scale magnetospheric currents. The creep rate
of a plastically deformed Coulomb solid3 depends even more
strongly on the applied stress than it does on temperature
(Chugunov & Horowitz 2010). In the presence of small-scale
magnetic irregularities (such as may be generated by Hall
drift in the solid crust; Gourgouliatos et al. 2022), the creep
rate can vary strongly over small distances. In this way, small-
scale crustal currents may be imprinted in the magnetosphere
in the form of strong cross-field gradients in the magnetic
field-aligned current density.
The ∼ 0.1 s durations of the most common X-ray bursts

emitted by magnetars (Göǧüş et al. 2001) point to an ori-
gin in a global disturbance of the magnetar crust: the burst
duration is comparable to the time for an elastic wave to
propagate around the star. A burst of low energy can be gen-
erated by a limited and localized slippage along a segment
of a fault network. We can represent this, as in Figure 1, as
localized plastic flow along a cartesian fault pointing in the
x-direction with thickness ∆ in the y-direction. A toy model
of the sub-surface flow can be found in Lander (2016), and
a global elastic-plastic-thermal model of the crustal demon-
strating such features in Thompson et al. (2017).

3 The crust is subjected to hydrostatic stress a few orders of mag-
nitude larger than its shear modulus.

The flow speed vpl = vpl(y)x̂ is a function of y and (in
the low-energy event investigated here) is assumed to vanish
at |y| = ∆/2. The background magnetic field is taken to
be vertical and uniform in the (x, y) plane, B = Bẑ. The
horizontal electric field at the surface of the star vanishes
in the local rest frame of the creeping surface; hence, E =
(vpl/c)B ŷ. The charge density at the surface is

ρ =
∇ ·E

4π
=

B

4πc
∂yvpl. (7)

In the case of the large magnetospheric current density
considered here, this charge density is naturally supplied by
a mild polarization of a collisional and trans-relativistic e±

plasma state, as described by Thompson & Kostenko (2020).
The magnetic field lines considered here extend to a large
distance from the star, and so this pair plasma will flow trans-
relativistically upward.
A steady-state solution involves a uniform vertical charge

flow Jz = ρvdr moving with drift speed vdr ∼ c. This vertical
current generates a horizontal magnetic field

Bx = −
∫
dy

4π

c
Jz = −vplvdr

c2
B = −vdr

c
Ey. (8)

The vertical Poynting flux is then

SP,z = −EyBx
4π

c =
(vpl

c

)2 B2

4π
vdr. (9)

Given that the creep velocity is a fraction εpl of the shear
wave speed at the base of the crust (vsh ' 1 × 108 cm s−1;
Strohmayer et al. 1991), we obtain a Poynting luminosity

SP,z · (km)2 = 1.3× 1041ε2
pl,−1

vdr

c

(
B

10BQ

)2

erg s−1. (10)

from a patch of crust of area (km)2. The horizontal creep
time is

tpl ∼
∆

εplvsh
∼ 3

∆4.5

εpl,−1
ms. (11)

Near one of the magnetic poles, this Poynting flux can flow
to a large radius and escape directly. A second estimate of the
escaping luminosity is obtained by approximating the surface
flow in the polar yielding zone as enhanced rotation with
frequency

Ωeff =
2πρc

B
=

1

2
∂yvpl ∼

vpl

∆
. (12)

The corresponding luminosity from one hemisphere can be
estimated as (following Spitkovsky 2006),

LP ∼
(

1

8
− 1

4

)(
ΩeffR

c

)4

B2R2c

= (0.9− 1.8)× 1043 R6
6

(
B

10BQ

)2 ε4
pl,−1

∆4
4.5

erg s−1.

(13)

This estimate is self-consistent as long as the width ∆ of
the plastic zone is larger than the diameter of the field bundle
that is opened up by the enhanced current,

∆ > 0.37 ε
1/2
pl,−1 km. (14)

This approach also allows us to estimate the radius at which
the electromagnetic field becomes quasi-transverse and es-
capes the corotating magnetosphere,

r0 ∼
c

Ωeff
∼ ∆c

vpl
= 1× 108 ∆4.5

εpl,−1
cm. (15)
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6 C. Thompson

One expects the outgoing Poynting flux to persist at least
for the light-travel time r0/c, because the crustal flow is co-
ordinated over a dimension ∆ and has a minimum charac-
teristic duration ∆/vpl. The simplest case is where the radial
thickness of the pulse is comparable to r0,

∆r = c∆t ∼ r0. (16)

We adopt this simplification in what follows. Other forcing
mechanisms naturally produce pulses of width c∆t > r0; a
nice example is forcing by a periodic elastic oscillation, as rep-
resented in the three-dimensional force-free electrodynamic
simulations of Yuan et al. (2020, 2022).
As we now discuss, transverse structure in the current is

carried along the magnetic field and will also flow to large
distances from the star.

3 FREEZING OF MAGNETIC
PERTURBATIONS IN AN OUTFLOW

We now turn to consider the effect of relativistic expansion on
small-scale currents that are imprinted on a large-amplitude
hydromagnetic wave. A relevant example is a nearly force-free
mode satisfying δJ ×B = 0 to linear order.4

A current perturbation generated near a magnetic pole of
the star will flow outward to a large radius. Close to the
magnetar, one may write δJ = δJ0(x⊥, x‖)e

iφ(x‖−ct)B̂. Here
we have separated out the phase variation along B, which
can be rapid in the case of a dynamic perturbation (a shear
Alfvén wave).
The shape of the current envelope δJ0 is preserved in the

(local) coordinate frame {x⊥} extending transverse to the
mean magnetic field B. The envelope is stretched in this
transverse plane as the poloidal field lines diverge away from
the star,

∇× (δJ ×B) = (B ·∇)δJ − (δJ ·∇)B − (∇ · δJ)B

=
∂

∂x‖

(
δJ0

B

)
eiφ ·B2B̂ = 0. (17)

Here, dx‖ = B̂ · dx. The terms involving the phase gradient
vanish as a consequence of the equation of current conserva-
tion,

∂(δρ)

∂t
+ ∇ · δJ = 0; δρ = δJ0e

iφ. (18)

The forcing of the magnetosphere by crustal motions per-
sists for a limited interval ∆t; the background field (on which
small-scale irregularities are superposed) transforms at a dis-
tance r0 ∼ c∆t ∼ 300 (∆t/ms) km to a large-amplitude elec-
tromagnetic wave. This wave propagates outward sublumi-
nally; at r > r0 there is a frame moving with radial speed
βE×Bc in which the electric field E nearly vanishes. The
Lorentz factor Γ = (1 − β2

E×B)−1/2 grows with radius close
to the star, Γ(r) ∼ r/r0. In what follows, this relativistic ex-
pansion will be approximated as locally spherical, with mean
magnetic field B = Bφ̂.
Now consider how a current perturbation responds to this

expansion. Its amplitude and scale ` in the direction trans-
verse to B are of particular interest, because these quantities

4 Additional terms in the Lorentz force arising from a background
current or electric field are of secondary importance.

Figure 2. Transverse electromagnetic modes (Alfvén waves)
frozen into an expanding relativistic shell (of duration ∆t and
thickness ' c∆t). Top panel: waves polarized in the direction of
the flow are supported by a radial magnetic field that decays more
rapidly away from the star than the transverse electromagnetic
field (Br/Bφ ∼ r−1). Bottom panel: waves polarized within the
shell are stretched in the non-radial direction and therefore domi-
nate the small-scale modes at large distances from the star. These
modes are polarized in the plane of a shock formed by the self-
intersection of the outflow, as are the secondary modes produced
by their interaction with the shock.
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determine ultimately the amplitude and wavelength of the
escaping radiation. At the base of the wave zone, the degree
of elongation along the magnetic field depends on whether
the perturbation is generated close to the star, or by a more
distributed process operating near radius r0 (e.g., turbulent
cascade or magnetic tearing). In the first case, the width in-
creases to

`0 ≡ `(r0) ∼
(
c∆t

R

)3/2

`(R) (19)

from a value `(R) at the surface of the star (radius R).
Moving next to the relativistic expansion phase, we will

generally work in a frame comoving with the flow. Note that
the current perturbation δJ is aligned with the toroidal mag-
netic field, but k⊥ is only constrained to lie in a plane perpen-
dicular to B. We may consider how a mode responds to the
expansion in the idealized case where it is freely propagating
and does not experience collisions with other modes. When
k⊥ is aligned with the direction of the flow, then ` = |k⊥|−1

is conserved in the frame of the star, but expands as

`(r) ∼ Γ(r) `0; (k ‖ r̂) (20)

in the comoving frame. Modes with non-radial k⊥ are
stretched according to

`(r) ∼ r

r0
`0. (k ‖ θ̂) (21)

We next summarize a few important qualitative effects of
expansion on embedded current perturbations.
(1) The current perturbations generally have a finite fre-

quency of oscillation but these oscillations slow down as
the irregularities are stretched out in the expansion (Figure
2). A structure in the magnetic field extending to an angle
∆φ > 1/Γ becomes frozen. For example, an Alfvén mode
has a frequency ω = ck · B̂ ' kφc at large magnetization;
in the present context the wavepacket is elongated along the
mean magnetic field, i.e., kφ � |k| ∼ 1/`. The non-radial
wavenumber redshifts as

kφ(r) =
(r0

r

)
kφ0, (22)

in the relativistic expansion phase; here kφ0 = kφ(r0) is the
wavenumber at the base of the outflow. One notes that ex-
pansion preserves the shape of a wavepacket in the inner part
of the expansion, where Γ ∝ r, but increases its elongation
as the bulk acceleration slows.
An increasing portion of the mode spectrum is frozen as

the flow expands. The flow duration, also measured in the
comoving frame, is ∼ r/Γc. Therefore, Alfvén modes stop
oscillating when their non-radial wavenumber drops below

kφ < kFφ (r) =
Γ

r
. (23)

It is convenient to measure this effect in the Lagrangian space
kφ0, where the critical wavenumber is

kFφ0(r) =
Γ

r0
. (24)

Modes with a higher wavenumber are constantly regenerated
by a cascade that starts at an effective stirring scale given
by Equation (23) or (24). This stirring scale progressively
shrinks (in Lagrangian wavenumber) as the flow expands.
(2) The wavepacket thickness can expand dramatically

compared with the electron skin depth d = c/ωp. If embed-
ded e± left over from a quasi-thermal fireball experience only
adiabatic cooling, they will cool to sub-relativistic temper-
atures. Their comoving density is related to the Thomson
depth τT,0 ∼ 10 at the launching radius by

n± =
τT,0r0

Γ(r)σTr2
. (25)

The plasma frequency ωp = (4πne2/me)
1/2 decreases as ωp ∼

Γ−1/2r−1.
We infer that the current gradient scale shrinks compared

with the expanding skin depth,

`

d
∝ Γ1/2

r
. (26)

A change in the relative size of ` and d can be associated
with a transition from a subluminal to a superluminal mode
(Thompson 2017).
(3) Shocks forming in the outflow can modulate the prop-

erties of advected magnetic modes in similar ways. In this pa-
per, we demonstrate how superluminal electromagnetic waves
may be excited by the collision of frozen magnetic perturba-
tions with shocks. The skin depth d hardly changes down-
stream of the shock, whereas the comoving mode wavelength
` shrinks by a factor ∼ γ2/γ1, with the result that `/d de-
creases. (Here, 1 and 2 label the upstream and downstream
sides of the shock; see Section 5.1 and Appendix A for further
details.)

3.1 Preferred Orientation of the Frozen Modes

The stretching of frozen magnetic irregularities depends on
their orientation (Figure 2).
We first consider transverse perturbations with δB ⊥ B

and δJ ‖ B. It is easy to see that, after some expansion,
the dominant advected mode is δB = δBθ θ̂ (as measured in
local spherical coordinates) with the gradient pointing in the
radial direction. The wave is frozen into the expanding flow
and so δB ∼ δBθ ∝ (Γr)−1 and ` ∝ Γ in the comoving frame.
The fraction of the outflow energy carried by this polarization
is invariant under expansion. The current perturbation scales
as δJφ ∝ (Γ2r)−1. In comparison, the radial magnetic pertur-
bation with non-radial gradient decays as δB ∼ δBr ∝ r−2,
` ∝ r, and δJφ ∝ r−3.
These two scalings coincide only when the outflow expands

rapidly as Γ ∝ r – as it does inside the fast magnetosonic
point. During the later stages of the expansion, the increase
of Γ is generally slower. We conclude that the non-radial mag-
netic perturbations dominate at large radius. These modes
are polarized in the plane of a shock formed by caustic in the
outflow – as are the secondary modes formed by the inter-
action with the shock, which can eventually escape as radio
waves. Our study of mode-shock interaction is restricted to
this case.
Consider next an isobaric mode with finite pressure per-

turbation, δP = −Bφ δBφ/4π. In the case where the pres-
sure is supplied by relativistic e±, the pressure perturbation
evolves differently under adiabatic expansion from the mag-
netic pressure perturbation, as δP ∝ n

4/3
± ∝ (r2Γ)−4/3 in

comparison with BφδBφ ∝ B2
φ ∝ (Γr)−2. A static isobaric

mode is therefore converted to a dynamic fast mode, which
may be damped. In addition, the high magnetization of a
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quasi-thermal fireball at its emission radius r0 ∼ c∆t implies
a hard upper limit to the amplitude of the seed isobaric mode
as compared with a seed Alfvén mode: (δBφ/Bφ)2 ∼ σ−2

0 ∼
10−8 for a burst of energy ∼ 1039 erg, duration ∆t ∼ 10−3 s,
and initial Thomson optical depth τT ∼ 10. (See the fireball
model outlined in Section 7.1.)

3.2 Width and Energy of the Frozen Modes

The escaping electromagnetic signal that we calculate in Sec-
tions 7 and 8 is most sensitive to the radial wavenumber and
energy of the frozen modes. The distribution of shear Alfvén
waves in wavenumber space {k⊥, k‖} is found by combining
the magnetic power spectrum (Equation (1)) with the con-
straint of a conserved energy flux, ωδB2 = ck‖δB

2 = const.
One obtains the simple scaling

`(kφ) ∼ `stir
(

kφ
kφ,stir

)−1/(α−1)

, (27)

where α = 3/2− 5/3.
So far we have considered the effect of expansion on free

modes. A next consideration is its effect on the strength of the
coupling between oppositely propagating Alfvén modes. This
is determined by the parameter δBθ/(kφ`)Bφ (Goldreich &
Sridhar 1995). We evaluate this in Lagrangian space, at fixed
wavenumber kφ0. Then δBθ/Bφ is not changed by expansion
and the scalings (20) and (22) imply

δBθ
(kφ`)Bφ

∼ r

Γr0

δBθ
(kφ`)Bφ

∣∣∣∣
r0

. (28)

This remains constant during the initial expansion, where
Γ(r) ∼ r, and begins to increase as Γ(r) flattens out. There-
fore mode collisions are suppressed only by the finite expan-
sion time.
As the hydromagnetic flow expands, the outer (‘stirring’)

scale of the mode spectrum shrinks in Lagrangian space. The
radial width of a mode of fixed kφ0 is invariant in the frame
of the observer, `obs = `/Γ = `0, and determines the wave-
length of the escaping radiation. We therefore wish to deter-
mine the energy carried by frozen modes at a given `0 (or
kφ0). Modes of wavenumber above the stirring scale (24) are
continuously regenerated. Therefore the energy spectrum of
the frozen modes, as evaluated in Lagrangian space, is essen-
tially the same as the spectrum (1) of turbulence in a static
box.
The mimimum radial width `F0 of the frozen modes is ob-

tained by making use of Equation (27) in Lagrangian space
and taking kφ,stir ∼ 1/r0 at the base of the outflow. There-
fore,

(`F0 )min ∼ (r0k
F
φ0)−1/(α−1)`stir(r0) ∼ `stir(r0)

Γ1/(α−1)
, (29)

where we have substituted Equation (24).
Given that the outflow reaches a limiting Lorentz factor

Γmax, one infers

(`F0 )min ∼
`stir(r0)

Γ
1/(α−1)
max

<
c∆t

Γ
1/(α−1)
max

. (30)

For a spectral index α = 3/2, this implies a wavelength at
least as short as c∆t/Γ2

max. Inverting this relation, one finds
a minimum Lorentz factor that is needed to freeze modes of

Figure 3. Linear perturbations of a shock in a relativistically mag-
netized plasma flow with field B oriented in the plane of the shock.
Upstream Lorentz factor γ1 > γφ,X(σ1) =

√
3σ1/2� 1 (see Equa-

tion (54)). The flow is perturbed on the upstream side by a mode
with comoving frequency ω̃ = 0 and wavenumber k̃1 ∼ ωp1/c.
In the frame of the shock, upstream and downstream flow vari-
ables oscillate with the common frequency ω = β1γ1ck̃1. A second
mode with finite comoving phase speed is excited downstream of
the shock. Top panel: upstream mode is a frozen Alfvén wave po-
larized δB ⊥ B; the downstream excitation includes an ordinary
electromagnetic wave (O-mode). Bottom panel: upstream mode is
a compressive isobaric mode with δB ‖ B and pressure perturba-
tion δP = −BδB/4π; the downstream excitation includes the X-
mode (fast magnetosonic mode). The shock position is perturbed
to linear order when the upstream mode is compressible (bottom
panel). We focus on ideal modes with wavelength much larger than
the e± gyro-radius; independent plasma simulations indicate that
a maser-driven instability of high-frequency fast waves is present
at the shock, but with small amplitude at large magnetization σ1.
A weak X-mode is reflected into the upstream flow, but only if
ck̃1 . ωp1/γ1.

radial wavenumber k⊥ and frequency ω = ck⊥, as observed
in the frame of the star:

Γmax > (ω∆t)α−1

∼ (ω∆t)1/2 = 2.5× 103 ν9(∆t−3)1/2. (α = 3/2)

(31)

4 SECONDARY WAVE MODES EXCITED NEAR
A SHOCK

We describe in this Section four modes that may be excited
near a relativistic shock, and outline how primary modes
frozen into the upstream flow will excite secondary modes on
both sides of the shock (Figure 3). The upstream modes will
be taken to have vanishing frequency ω̃ as measured in the
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frame of the plasma flow; we consider a frozen shear Alfvén
wave and an isobaric mode. The primary mode oscillates at
a finite frequency in the shock frame,

ω = ω1 = γ1cβ1 · k̃seed. (32)

The secondary modes oscillate at the common frequency ω
but may also have a propagating character in the plasma
frame. In what follows, 1 and 2 denote the upstream and
downstream sides of the shock. When a quantity is being
considered in both the shock frame and the plasma rest frame,
a tilde will denote its value in the rest frame, e.g., B̃, k̃, ω̃
for the comoving flux density, wavevector, and frequency.5

The magnetic field observed in shock frame is aberrated
into the plane of the shock (the y−z plane) by the relativistic
upstream motion. The wavefront of any upstream perturba-
tion is also aberrated into the shock plane. Downstream of a
strong shock, the comoving flux density is increased, by a fac-
tor B̃2/B̃1 ∼ γ1/γ2, even while the normal component of B
is conserved. Hence, one may assume that the comoving mag-
netic field lies in the plane of the shock on the downstream
side.6

We will therefore focus on the simplest case where the per-
turbation wavevector is aligned with the shock normal, k =
k x̂, and choose the background magnetic field B = B ŷ ⊥ k
on both sides of the shock.
Two additional finite-frequency modes – the ordinary and

extraordinary electromagnetic modes, O-mode and X-mode
– may be excited on the downstream side. A compressive
seed perturbation like the isobaric mode will also excite a
small-amplitude oscillation of the shock. An interesting case
is where the comoving wavevector k̃seed ∼ 1/d1. When the
shock is strong, the downstream modes then have a relatively
short wavelength, k̃2 > 1/d2, enhancing their electromagnetic
character. In this case, the shock oscillation is too rapid to
excite a backward-propagating X-mode wave.

4.1 Pairing of Upstream and Downstream Modes

An oscillating electric field is excited in the downstream
plasma, driven by (i) the postshock imbalance between the
current perturbation δJ and the magnetic curl i(c/4π)k̃×δB̃
and, in the case of a compressive seed perturbation, by (ii)
an oscillation of the shock.
A downstream X-mode or O-mode wave has a finite fre-

quency in the plasma frame, with a phase speed β̃φ = ω̃/ck̃ =
O(1). The frequency in the shock frame is

ω2 = γ2

(
ω̃ + β2ck̃

)
= γ2

(
β̃φ + β2

)
ck̃. (33)

The downstream perturbation is compressed along with the
background magnetofluid, k̃ ∝ B̃, n; it therefore shrinks com-
pared with the electron skin depth d. In the case of a strong
shock,

k̃2d2 ' 2−3/2

(
γ1

γ2

)
k̃seedd1. (34)

5 The magnetization σ, plasma frequency ωp, particle density n
and pressure P , sound speed cs, and effective massM are always
defined in the plasma frame.
6 The upstream comoving field may not generally have this orien-
tation; nonetheless, the aberration effect in the shock frame makes
this irrelevant to our conclusions.

Here, we have substituted Equation (61).
The mode excited downstream of the shock depends on the

polarization of the upstream perturbation.
(1) When the upstream magnetic perturbation is trans-

verse to B̃, as it is in the frozen Alfvén mode, the O-mode is
excited downstream of the shock,

A[ω̃1 → 0]
shock−−−→ O[ω̃2 > ωp2], (35)

with comoving frequency ω̃2 > ωp2 (see Equation (47)). The
electric vector of the O-mode is aligned with the background
magnetic field δE ‖ B. The O-mode is primarily electro-
magnetic when k̃2d2 > 1, with a phase speed approaching
the speed of light, β̃φ2 → 1. Downstream of a strong shock,
a negligible component of the downstream perturbation re-
mains in the A-mode.
(2) An isobaric seed perturbation converts on the down-

stream side to a weaker isobaric mode and an oscillating
magnetosonic compression (the X-mode) with electric vec-
tor δE ⊥ B and phase speed β̃φ given by Equation (53),

I[ω̃1 = 0]
shock−−−→ I[ω̃2 = 0] + X[ω̃2]. (36)

4.2 Reflected X-mode

A compressive excitation of the shock may also excite an X-
mode propagating counter to the upstream flow, but only if
the incoming perturbation has a long wavelength, k̃seedd1 �
1. This reflected mode shares the same frequency as the in-
coming isobaric mode as measured in the frame of the shock.
An upper bound to the frequency of the reflected mode is
given by the intrinsic maser instability. The maser-generated
mode has essentially the same frequency as the (comoving)
gyro-frequency of particles on the downstream side of the
shock; in the case of a strong shock, one has in the frame of
the downstream flow7

(ωmaser)2 ∼
eB2

γ2M2c
' 2

eB1

γ1M1c
= 2ωc1. (37)

The comoving cyclotron and plasma frequencies are related
by

ω2
c

ω2
p

= σ =
B2

4πγ2w
. (38)

The frequency of the maser-generated mode in the frame of
the shock is

ωmaser = γ2[1− β2/(βφ,maser)2](ωmaser)2, (39)

where (βφ,maser)2 is its phase speed in the frame of the down-
stream flow. We require (βφ,maser)2 > β2 for this mode to
propagate upstream of the shock; hence

ωmaser .
ωc1
γ2

<
γ1

γ2
ωp1. (40)

A reflected X-mode is present only if the seed perturbation
has frequency ω < ωmaser in the frame of the shock. Hence,

k̃seedd1 .
1

γ2
∼ 1

σ
1/2
1

(δB1,X 6= 0). (41)

7 The normalization here is close to that found numerically (Plot-
nikov & Sironi 2019; Sironi et al. 2021); we have expressed the
effective massM = w/nc2 in terms of the plasma enthalpy w and
made use of the jump condition (60).
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The seed perturbations we consider typically have a higher
frequency, in which case the reflected X-mode is frozen out.
Even when Equation (41) is satisfied, we will see that the re-
flected mode is subdominant both to the downstream modes
and to the maser-generated upstream mode.

4.3 Linear Plasma Modes

The polarization, dispersion relation, and relations between
the mode variables are summarized here in more detail. (We
work in the plasma frame and therefore drop the tilde label
in this Section.) Derivations can be found in Appendix B.
The perturbation variables are reconstructed in the frame of
the shock in Section 5.2.
We consider a superposition of zero-frequency modes on

the upstream side of the shock.
(1) A frozen Alfvén wave with vanishingly small frequency

and magnetic perturbation δB ⊥ B. The wavevector of this
mode is k = k(x̂ + εy). We are interested in the case where
the mode is extremely elongated along the magnetic field,
ε→ 0. Its frequency vanishes as

ω = βAck‖ = ε · βAck, (42)

where βA = (1 + 1/σ)−1/2 is the Alfvén speed in units of the
speed of light.
The polarization of interest is the one which couples to a

superluminal electromagnetic wave on the downstream side
of the shock:

δBA = δBA ẑ = δB0e
ik·x ẑ; (43)

The electric vector is also polarized perpendicular to B, but
has a dominant longitudinal component.
(2) An isobaric mode with δB parallel to B. The perturba-

tion to the Lorentz force is compensated by a plasma pressure
gradient, hence

δPI = −BδBI

4π
. (44)

In thermal equilibrium, as assumed here, the plasma state is
defined by two thermodynamic variables. The perturbation
is taken to be isothermal upstream of the shock but that
assumption cannot be made on the downstream side.
At high magnetization, the linear isobaric mode is re-

stricted to a much lower amplitude than is the frozen Alfvén
mode. Requiring that δP/P . 1 implies that

δB2
I

B2
.

1

(4σ)2
; (45)

by contrast, a linear Alfvén mode is limited to δBA . B.
Two finite-frequency modes are excited on the downstream

side. Both are transverse modes, in the sense that δB, δE ⊥
k.
(3) The electromagnetic O-mode has electric vector aligned

with B,

δE = δE ŷ = βφδB0e
i(kx−ωt);

δB = δB ẑ = −x̂× δE

βφ
(46)

and dispersion relation

ω2 = c2k2 + ω2
p. (47)

This mode is superluminal, with phase speed

βφ,O =
ω

ck
=

√
1 +

ω2
p

c2k2
(48)

and group speed

βg,O =
1

βφ,O
=

ck√
c2k2 + ω2

p

. (49)

The plasma temperature is relativistic on the downstream
side of the shock, and the plasma frequency is given by

ω2
p =

4πe2n

M , (50)

where

M =
w

nc2
(51)

is the effective mass and w is the comoving enthalpy density
including rest energy.
(4) The electromagnetic X-mode excited on the down-

stream side of the shock has a comoving frequency � ωc2
and has a hydromagnetic description as the fast mode. The
magnetic perturbation δB is aligned with the background
field,

δB = δB ŷ = δB0e
i(kx−ωt);

δE = δE ẑ = βφ x̂× δB, (52)

and the mode dispersion relation is

βφ,X = ±
√
σ + c2s/c2

σ + 1

' ±
[
1− 1− c2s/c2

2σ

]
. (σ � 1) (53)

The corresponding phase Lorentz factor is

γφ,X =
1√

1− β2
φ,X

=

√
3(σ + 1)

2
(54)

when the plasma is relativistically hot. The group speed
βg,X ' βφ,X.
The frozen Alfvén mode is incompressible and so couples

uniquely to the ordinary electromagnetic mode downstream
of the shock. The isobaric mode couples to a linear combi-
nation of a compressive fast mode and a more complicated
isobaric mode (involving a finite temperature perturbation).
(5) A reflected X-mode is present when an isobaric per-

turbation of wavenumber smaller than (41) collides with the
shock. The nature of this reflected mode depends on whether
its frequency in the frame of the upstream flow is greater
or smaller than ωc1. The condition for its existence can be
re-expressed as

ω̃1,X ' 2γ1ω . 2
γ1

γ2
ωc1 (55)

in the case of a strong shock (γ1 � γ2). The reflected mode
is superluminal when ω̃1,X > ωc1 and follows the dispersion
relation (B18). We will compute the mode amplitude in this
regime.

5 EVALUATION OF SECONDARY MODES

We now solve for the secondary plasma modes in terms of
the primary mode that is carried toward the shock by the
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upstream flow (Figure 3). We treat the shock as a discontinu-
ity, considering modes with wavelengths greatly exceeding the
downstream particle gyroradius and the shock thickness. The
shock jump can be expressed in terms of the ratio γ1/γ2 > 1.
The amplitudes of the secondary modes are obtained by

matching upstream and downstream perturbations at the in-
stantaneous position of the shock. The analysis that follows
makes use of (i) the the mode dispersion relations reviewed
in Appendix B and summarized in Section 4.3 and (ii) the
relations between mode variables re-evaluated in the frame
of the shock, as summarized in Appendix C.

5.1 Shock Jump

We first summarize the flow parameters downstream of a pla-
nar, relativistic MHD shock; for a derivation, see Appendix
A. The magnetization is taken to be large and is expressed in
terms of the comoving enthalpy density,8 σ1 = B2

1/4πγ
2
1w1 �

1. The downstream flow is also relativistic and strongly mag-
netized.
The upstream plasma must flow faster than a fast magne-

tosonic wave in the frame of the shock,

γ1 > γφ,X(σ1) =

(
3σ1

2

)1/2

, (56)

(see Equation (54)). Then,

1

γ2
2

=
1

σ1
− 1

2γ2
1

. (σ1 � 1) (57)

In the case of a strong shock,

γ2 ' σ1/2
1 ; σ2 ' 2σ1. (58)

Although the ratio B2/B1 remains close to unity in the
shock frame, there is a compression of the comoving flux den-
sity (as measured in the plasma frame):

B̃2 '
(
γ1

γ2

)
B̃1, (59)

where B̃ = B/γ. The quantity B̃/n is conserved exactly in
the ideal MHD approximation.
The downstream enthalpy density is

w2 = w1 +
B2

1

8π

(
1

γ4
2

− 1

γ4
1

)
' 1

2

(
γ1

γ2

)2

w1. (γ1 � σ
1/2
1 ) (60)

The second line applies to a strong shock and is obtained
by substituting Equation (58). The shift in plasma frequency
(Equation (50)) across the shock is therefore

ωp2
ωp1

=
n2

n1

(
w1

w2

)1/2

' 21/2. (γ1 � σ
1/2
1 ) (61)

8 The expressions that follow are greatly simplified in the case of
moderate shock compression by assuming the upstream plasma to
be relativistically hot in the comoving frame; this guarantees that
the downstream plasma is also hot.

The effective particle gyrofrequency appearing in the wave
dispersion relations is, similarly,

ωc =
eB

Mc
= σ1/2ωp (62)

(see Appendix B).
The normal flux of transverse momentum (components i =

y, z) is also conserved across the shock:

Txi,1 = Txi,2. (63)

The off-diagonal components of the stress-energy tensor are

Txi = uuiw +
BxBi

4π
+
ExEi

4π
. (64)

Taking into account that Bx = 0 and that all components of
E are continuous across the shock, Equations (60) and (63)
reduce to

βi,2
βi,1

'
(
γ1

γ2

)2
w1

w2

' 2. (γ1 � σ
1/2
1 ) (65)

5.2 Secondary Mode Amplitudes

We now calculate the amplitudes of the secondary modes.
Our procedure combines two steps.
(1) For each mode, we express the perturbations to E (the

electric field in the plane of the shock), γ, u, P , n in terms
of the magnetic perturbation δB and phase speed βφ.
(2) Five boundary conditions are applied in the instan-

taneous frame of the shock. These are equal in number to
the conservation equations (A1)-(A4) and (65) but, when
the plasma magnetization is large, some take a much sim-
pler form.
The position of the shock is unperturbed, to linear order,

when the incident mode is incompressible (frozen A-mode).
By contrast, a compressible mode excites a longitudinal mo-
tion of the fluid and of the shock; the flow quantities in the
instantaneous shock rest frame are then obtained by an in-
finitesimal Lorentz boost of the unperturbed flow by a veloc-
ity δβs. For example, the perturbations to flow Lorentz factor
and four-speed transform as

δγ → δγ − u δβs; δu → δu− γ δβs. (66)

The electric and magnetic field evolve under the same boost
as

δE → δE + δβs x̂×B;

δB → δB − δβs x̂×E = δB − δβs βB. (67)

The boundary conditions in the frame of the shock are, to
leading order in inverse powers of γ1 and γ2,

1. E1 = E2;

2. γ1n1 = γ2n2;

3. w1γ
2
1β⊥,1 = w2γ

2
2β⊥,2;

4. w2 = w1 +
B2

1

8π

(
1

γ4
2

− 1

γ4
1

)
;

5.
1

γ2
2

=
1

σ1
− 1

2γ2
1

. (68)

The fourth and fifth boundary conditions follow from the
conservation of energy flux and normal momentum flux across
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the shock and are exact in the limit σ1 → ∞ (see Appendix
A).
The boundary conditions (68) are linearly perturbed, fol-

lowing the expressions given in Appendix C, and expressed
in terms of the mode amplitudes δBi on both sides of the
shock. The linear equations so obtained are then solved.

5.2.1 A→ A+O

This is the simplest case, because the frozen Alfvén mode is
incompressible, with magnetic perturbation δB ⊥ B. The
upstream mode then carries vanishing perturbations to β, γ,
n, and w. As a result, the perturbations to the fluxes of par-
ticle number, energy and momentum all vanish and the posi-
tion of the shock is unperturbed. The electric perturbations
on the upstream and downstream sides are, from Equations
(C3) and (C9),

δEi,A = βi δBi,A ŷ −
βA,i

γi
δBi,A x̂ (i = 1, 2);

δE2,O = βφ,2 δB2,O ŷ. (69)

Requiring that the normal component of δE is continuous
across the shock gives

δB2,A '
γ2

γ1
δB1,A < δB1,A. (70)

Boundary condition 1 applied in the plane of the shock fur-
ther gives δB1,A ' δB2,A+δB2,O. Hence, a propagating mode
that is excited on the downstream side has an amplitude

δB2,O '
(

1− γ2

γ1

)
δB1,A. (71)

When the shock is strong, the O-mode carries a large fraction
of the fluctuating electromagnetic field downstream of the
shock. By contrast, the O-mode amplitude vanishes for a very
weak shock, as γ2 → γ1.

5.2.2 I → I +X

The isobaric mode is compressible and excites an oscillation
of the shock. We start by observing that the reflected ex-
traordinary wave that is emitted by this oscillation – in the
direction opposite to the relativistic plasma flow – has a small
amplitude δB1,X in the frame of the shock. We therefore start
by setting δB1,X → 0 to determine the amplitudes of the
other modes. The small but finite value of δB1,X is then ob-
tained as a perturbation.
Substituting the transverse electric perturbation δE '
−βδB + δβsB into boundary condition 1 gives

δB1,I = δB2,I − δβs(B1 −B2)

' δB2,I +B1

(
1

2γ2
2

− 1

2γ2
1

)
δβs. (72)

When perturbing boundary condition 5, we will need δγI =
0 for the incompressible I modes on both sides of the
shock and δγ2,X/γ2 ' 1

2
δB2,X/B2. In addition, δσ1,I/σ1 =

4σ1 (δB1,I/B1). Setting δγ1 = −γ1δβs, δγ2 = δγ2,X − γ2δβs
and keeping terms to leading order in σi, we get

δβs ' −2σ1
δB1,I

B1
. (73)

When perturbing boundary condition 4, one has similarly

δwI/w = −4σ(δBI/B) on both sides of the shock. Note that
δβs also involves a factor of σ, but δw2,X does not (see Equa-
tion (C18)) and so can be neglected. Then we get to leading
order
1

γ2
2

δB2,I =
1

γ2
1

δB1,I +
B1

2

(
1

γ4
1

− 1

γ4
2

)
δβs. (74)

The amplitudes of the downstream modes are expressed in
terms of δB1,I by combining equations (72)-(74),

δB2,I

δB1,I
=

1− 3σ2
1/4γ

4
1

1− σ1/2γ2
1

;

δB2,X

δB1,I
=

(1− 3σ1/2γ
2
1)(1− σ1/γ

2
1)

1− σ1/2γ2
1

. (75)

As expected, δB2,I → δB1,I and δB2,X → 0 as the shock
becomes very weak, γ1 → γφ,X(σ1) = (3σ1/2)1/2.
Now we return to consider the reflected X-mode. Its am-

plitude is obtained from the transmitted X-mode wave by
matching the flux of transverse momentum across the shock.
The transverse e± quiver velocity is obtained from Equation
(B14), which when evaluated in the frame of the shock is

γ1(δβ⊥)1,X = i

(
ω2 − c2k2

1

4πen1c

)
δE1,X

ω
. (76)

(Here, we have taken into account that the right-hand side
of this expression is invariant under Lorentz boosts along the
plasma flow.) The X-mode has a comoving frequency

ω̃1 ' 2γ2
1ck̃seed

= 3σ
1/2
1

[
γ1

γφ,X(σ1)

]2
(
ck̃seed

ωp1

)
ωc1 � ωc1 (77)

on the upstream side, and a frequency ω̃2 ' ω/2γ2 � ωc2 on
the downstream side. The X-mode dispersion relation (B17)
then gives

ω2 − c2k2
1,X = ω̃2

1,X − c2k̃2
1,X ' ω2

p1;

ω2 − c2k2
2,X ' −2ω̃2

2

3σ2
. (78)

Substituting these expressions into Equation (76) and bound-
ary condition 3 gives

δB1,X

δB2,X
' −δE1,I

δE2,I
=

w2

6σ2w1

(
ck̃seed

ωp1

)2

. (79)

Taking into account that the reflected X-mode is present only
if k̃seed lies below the bound (41), we have in the case of a
strong shock,
δB1,X

δB2,X
.

1

24σ2
1

. (80)

We conclude that the reflected mode is a small perturbation
to the transmitted modes. In the fireball model described in
Section 7, a fireball of energy E ∼ 1039 erg and duration
∼ 10−3 s has a magnetization σ0 ∼ 104 in the source zone
and σ1 ∼ 10 in the interaction zone. Then the reflected mode
amplitude is minuscule, δB1,X/δB2,X ∼ 10−9 − 10−3.
A final note: conservation of the e± flow (boundary con-

dition 2) has not been applied here. That is because the co-
moving density n does not appear in the other boundary con-
ditions. Essentially, boundary condition 2 determines the rel-
ative strength of the density and temperature perturbations
in the downstream isobaric mode. The mode amplitudes are
obtained independently of this.
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Figure 4. Collision of two uniform, relativistically magnetized
shells. The outer, more slowly moving, shell is labelled 1 and
the inner shell 4; the motion of both shells is relativistic in the
frame of the star, Γ1,Γ4 � 1. The strength of the forward shock
moving into the outer shell (1) is determined by the parameter
S ≡ (B4/B1)1/2 = (LP4/LP1)1/4, where the nonradial magnetic
field B is measured in the frame of the star and L = 4πB2r2c

is the equivalent spherical Poynting luminosity. Both the forward
and reverse shocks move relativistically in the frame of the con-
tact, so as to satisfy the post-shock boundary condition β = 0

in the shocked layers 2 and 3. The shocked material moves with
Lorentz factor Γc = Γ2 = Γ3 = SΓ1 in the frame of the star, which
is essentially the center-of-momentum frame defined by the inner
and outer electromagnetic flows. A strong forward shock requires
LP4 � LP1 (but is not required for the linear mode conversion
described here); a strong reverse shock requires Γ4 � SΓ1.

6 X-MODE AND O-MODE EMISSION DURING
SHELL COLLISIONS

Intermittency in the electromagnetic outflow from a bursting
magnetar can lead to caustic formation and the creation of
shocks in the outflow. When the magnetization is very large,
the shock strength can be directly related to the amplitude
of the variations in Poynting flux. In this Section, we first
describe a simple model of the forward and reverse shocks
produced in an idealized situation involve a collision between
two uniform and strongly-magnetized shells. This general-
izes the treatment of Beloborodov (2021b) by allowing for
the formation of a reverse shock and by evaluating the finite
compression strength across both shocks.
Then, we show how the frequencies and powers of the emit-

ted O-mode and X-mode radiation, as measured in the frame
of the magnetar, are related to those of the seed frozen plasma
modes (frozen Alfvén wave and isobaric mode). These results
are applied to a concrete model of an accelerating, magne-
tized fireball in Section 7 and 8, where the inhomogeneous
expansion of the inner, more luminous shell is also taken into
account.

6.1 Strength of Shocks Formed by Shell Collisions

This late burst of acceleration is ultimately limited by inter-
action with an exterior medium that is moving more slowly.
Using a commonly adopted notation (Figure 4), we divide the
system into four components: (1) the external medium; (2)
the shocked or compressed external medium; (3) the shocked
or compressed ejecta shell; and (4) the still freely expand-
ing portion of the ejecta shell. Layers 2 and 3 are separated
by a contact discontinuity and move with a common Lorentz
factor

Γ2 = Γ3 = Γc. (81)

We consider the interaction on an intermediate timescale,
where the forward and reverse shock have not yet passed
through the impacting layers 1 and 4. The forward and re-
verse shocks move relativistically with respect to the contact,
with Lorentz factors Γfs and Γrs in the frame of the magne-
tar. An exact solution is obtained in the approximation where
both slabs are homogeneous: then the Lorentz factor of each
shock adjusts so that the post-shock flow speed matches that
of the contact and we have the ordering

Γfs � Γc; Γrs � Γc. (82)

It will be noted that, because the forward and reverse shows
move relativistically with respect to the contact, Γfs,c =

O(σ
1/2
1 ), Γrs,c = O(σ

1/2
4 ), the structure considered here does

not require that Γc > Γ1 or Γ4 > Γc. In other words, the
contact does not have to move faster than the outer shell, or
more slowly than the inner shell. A self-consistent collision
does of course require that Γ4 > Γ1.
The self-consistent solution for Γrs, Γc, and Γfs is obtained

by noting that the electric field is constant across each shock,
as measured in the frame of the shock,

(E2)fs = (E1)fs; (E3)rs = (E4)rs. (83)

The magnetic pressure is constant across the contact,

(B2)2
c = (B3)2

c ⇒ B2
2 = B2

3 . (84)

In what follows Bi labels the magnetic field in zone i mea-
sured in the frame of the magnetar, and Ei = βiBi the cor-
responding electric field. Applying the inequalities (82), the
magnetic flux densities in the frame of the forward shock are

(E1)fs = Γfs(E1 − βfsB1)

= Γfs(β1 − βfs)B1 ' −Γfs(1− β1)B1;

(E2)fs ' −Γfs(1− βc)B2. (85)

We conclude that

B2 =
1− β1

1− βc
B1 '

(
Γc
Γ1

)2

B1. (86)

The same procedure applied at the reverse shock gives

(E4)rs = Γrs(β4 − βrs)B4 '
B4

2Γrs
;

(E3)rs ' B3

2Γrs
(87)

in the regime where the reverse shock is moving away from
the star (Γ4,rs � Γ4). Equating the field pressure on both
sides of the contact gives

Γc =

(
B4

B1

)1/2

Γ1 =

(
LP,4

LP,1

)1/4

Γ1. (88)
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Here LP is the equivalent spherical Poynting luminosity. One
observes that a self-consistent solution is obtained only if the
inner shell (4) carries a higher Poynting luminosity than the
outer shell (1).
The strength of the two shocks is also of interest. The ratio

of upstream to downstream Lorentz factors, measured in the
frame of the forward shock, is9

Γ1,fs

Γfs,c
=

Γfs/2Γ1

Γfs/2Γc
=

Γc
Γ1
. (89)

We see from Equation (88) that the strength parameter for
the forward shock is simply related to the luminosity ratio,

S ≡
(
LP,4

LP,1

)1/4

. (90)

The radio emission process described here does not require a
strong forward shock, which in any case is possible only for
a large ratio of luminosities.
We can separately obtain the upstream and downstream

Lorentz factors measured in the frame of the shock by sub-
stituting γ1 → Γ1,fs and γ2 → Γfs,c into the jump condition
(57),

Γ1,fs =

√
σ1

(
1

2
+ S2

)
; Γfs,c =

Γ1,fs

S . (91)

As expected, the downstream Lorentz factor Γfs,c trends to
the strong shock value σ1/2

1 as LP,1/LP,4 → 0.
Similarly, from the relation

Γ4,rs

Γrs,c
' Γ4/2Γrs

Γc/2Γrs
=

Γ4

Γc
(92)

we infer that

Γ4,rs =

√
σ4

(
1

2
+ S2

rs

)
; Γrs,c =

Γ4,rs

Srs
. (93)

Substituting Equation (88), the strength parameter for the
reverse shock is

Srs =
Γ4

SΓ1
=

Γ4

Γ1

(
LP,1

LP,4

)1/4

. (94)

Our description of the collision as involving two uniform
slabs is self-consistent only if the upstream and downstream
flows both move toward the contact (see the bottom panel
of Figure 3). A lower bound is implied on the ratio Γ4/Γ1.
Requiring that Srs > 1 gives

Γ4 >

(
LP,4

LP,1

)1/4

Γ1. (95)

When this condition is not satisfied, e.g., when the inner shell
is much more luminous than the outer shell, it is necessar-
ily to consider the inhomogeneous outer profile of the more
luminous shell (Section 7). One finds that a relatively thin
forward part of the inner shell does reach the Lorentz factor
(95). This thin contact layer is continually supplied by ma-
terial deeper in the shell as it expands and its mean Lorentz
factor continues to grow.

9 Here Γa,b denotes the Lorentz factor of zone a as seen in the rest
frame of zone b.

6.2 O-mode and X-mode Radiation: Star Frame

The amplitudes of the secondary O-mode and X-mode waves
were calculated in Section 5.2 in the frame of the shock. The
wave amplitudes and frequencies as observed in the frame of
the magnetar are then obtained by a straightforward Lorentz
transformation.
The O-mode and X-mode are modified by this transforma-

tion in significantly different ways. For a fixed amplitude of
the seed zero-frequency mode we find that

(1) The mode with the higher group speed downstream of
the forward shock (the X-mode) emerges significantly weak-
ened compared with the O-mode.

(2) Reflection toward the observer enhances the amplitude
of the X-mode, but not enough to compensate the minuscule
amplitude of the reflected mode obtained in the frame of the
shock.

Reinforcing these conclusions is the fact that an upstream
frozen Alfvén mode (which couples to the O-mode at the
shock) typically has a much larger amplitude than the seed
isobaric mode (which couples to the X-mode).
We first consider the radiation emerging from the forward

shock and then turn to the case of the reverse shock.

6.2.1 Forward Shock: Downstream Modes

A key point first to be noted is that the downstream O-mode
(and sometimes the X-mode) can have a group speed signifi-
cantly below the speed of light, as measured in the frame of
an emitting shock. As a result, it propagates toward the ob-
server in the frame of the star. The plasma through which it
propagates eventually decelerates due to interaction with an
external medium, and in the deceleration process the comov-
ing O-mode frequency grows with respect to the local plasma
frequency.
The seed magnetic perturbation δBseed is carried with the

outflow in zone 1; its amplitudes in the frame of the magnetar
and of the forward shock are related by

(δBseed)fs = Γfs(1− βfsβ1)δBseed. (96)

The downstream mode amplitude (δB2)fs in zone 2 is related
to (δB1)fs by

(δB2)fs = Fshock(S) · (δBseed)fs. (97)

The factor Fshock is given by Equations (71) and (75) for
the O-mode and X-mode, respectively. Making use of Equa-
tion (91), this may be written in terms of the variable
S = Γ1,fs/Γfs,c = (LP,4/LP,1)1/4,

FO
shock(S) = 1− 1

S ;

FX
shock(S) =

(S2 − 1)(2S2 − 1)

S2(2S2 + 1)
. (98)

The downstream electric perturbation is (δE2)fs =
βg,2(δB2)fs, where βg,2 < 0 and

1− |βg,2| =
1− |β̃g,2|

2Γ2
fs,c(1 + |β̃g,2|)

; Γfs,c '
Γfs

2Γc
. (99)

The downstream magnetic perturbation in the frame of the
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magnetar is then (for either the O- or X-mode)

δB2 = Γfs[(δB2)fs + βfs(δE2)fs]

' S2 Fshock(S)

[
1− |β̃g,2|
1 + |β̃g,2|

+
1

4Γ2
c

]
· δBseed.

(100)

Here, we have made use of the inequality Γfs � Γ1 and sub-
stituted Equation (88) for Γc. The first term in brackets dom-
inates when the wavelength of the O-mode is comparable to
the plasma skin depth. The factor of S2 represents reflection
from the upstream frame by the frame comoving with the
downstream flow, S ' Γc/Γ1.
The frequency of the downstream propagating mode is lin-

early related to the comoving wavenumber k̃seed of the seed
zero-frequency mode in zone 1. The frequency of the seed
mode is ω1 = Γ1β1ck̃seed ' Γ1ck̃seed in the frame of the mag-
netar, and

(ω1)fs ' −
Γfs

2Γ1
ck̃seed (101)

in the frame of the forward shock. We also have (ω2)fs =
(ω1)fs; hence the downstream mode has a frequency

ω2 = Γfs [(ω2)fs + βfsc(k2)fs]

= Γfs

(
1 +

βfs

βg,2

)
(ω2)fs. (102)

in the frame of the magnetar. Making the same approxima-
tions as in the derivation of Equation (100), we find

ω2 ' S2

[
1− |β̃g,2|
1 + |β̃g,2|

+
1

4Γ2
c

]
· Γ1ck̃seed. (103)

We conclude that the transmitted O-mode will typically
dominate the transmitted X-mode, for two reasons. First, the
factor 1−|β̃g,2| ' 1/3σ2 is small for the transmitted X-mode
(see Equation (53)), but is of order unity in the case of an
ordinary wave with k̃2d2 = O(1) (see Equation (49)). Second,
a seed isobaric mode is limited to an amplitude δBseed,I/B ∼
1/σ0 – here σ0 being the magnetization at the base of the
outflow – whereas a frozen Alfvén mode can have a much
larger amplitude upstream of the shock.

6.2.2 Forward Shock: Reflected X-mode

The reflected X-mode moves outward with a group speed
βg,1 ' 1 in the frame of the forward shock. Its amplitude is
enhanced in the frame of the magnetar compared with that
of the shock,

δB1,X = Γfs(1 + βfsβg,1)(δB1,X)fs ' 2Γfs(δB1,X)fs. (104)

This enhancement is compensated by the small normalization
of the reflected X-mode in the frame of the shock, as given
by Equation (79). The net result is that the observer sees an
outgoing wave with amplitude

δB1,X = −Γ2
1,fs

(
2w2

3w1σ2

)(
ck̃seed

ωp1

)2

δBseed. (105)

The prefactor may be expressed in terms of S by substituting
Γ1,fs and Γfs,c for γ1 and γ2 in Equation (60) and making use

of Equation (91),

δB1,X = −FX
shock(S)

S2(2 + S2)2

3(1 + 2S2)

(
ck̃seed

ωp1

)2

δBseed

' −S
4

6

(
ck̃seed

ωp1

)2

δBseed. (S � 1) (106)

The reflected X-mode has a higher frequency, by a factor
& Γ2

1,fs, compared with the downstream X-mode:

ω1 = Γfs

(
1 +

βfs

βg,1

)
(ω1)fs ' 4Γ2

1,fs · Γ1ck̃seed, (107)

giving

ω1 ' 2σ1

(
1 + 2S2) · Γ1ck̃seed. (108)

Although Equations (106) and (108) contain an additional
factor of S2 as compared with the analogous expressions (100)
and (103) for the transmitted modes, we must remember that
the reflected X-mode is present only when the seed isobaric
perturbation has a wavenumber k̃seedd1 . 1/Γ1,fs ∼ 1/Sσ1/2

1

(see Equation 41)). On balance, δB1,X is suppressed com-
pared with δB2,O by a factor ∼ 1/6σ1 and also by the relative
weakness of the seed isobaric mode.
The Poynting flux carried by the reflected X-mode is there-

fore substantially weaker,

FP,O

FP,X
∼ δE2,OδB2,O

δE1,XδB1,X

> 36σ2
0σ

2
1

[
1− |β̃g,2|
1 + |β̃g,2|

]2
δB2

seed,A

B2
, (109)

Here, the amplitude of the seed isobatic mode is limited to
δBseed,I/B < 1/σ0 and β̃g,2 is the group speed of the O-
mode in the plasma frame. For example, taking a down-
stream O-mode wavenumber k̃2d2 = 1 and group speed
β̃g,2 = 1/

√
2 along with δB2

seed,A/B
2 ∼ (ω∆t)−1/2 =

4 × 10−4 ν
−1/2
9 (∆t−3)−1/2 (see the spectrum of seed Alfvén

modes given by Equation (1)) gives FP,O/FP,X > 4 ×
106(σ0/104)2(σ1/10)2 ν

−1/2
9 (∆t−3)−1/2. More details about

the magnetization of the outflow from a bursting magnetar
can be found in Section 7.

6.2.3 Reverse Shock

It is easier to obtain the observed amplitudes of the secondary
modes that are emitted by the reverse shock, because the
required Lorentz boost is now in the direction of the observer.
Taking now δBseed to represent the amplitude of the seed
perturbation transported out by the inner shell, the electric
perturbation is δEseed = β4δBseed. The Lorentz factor of the
reverse shock is much smaller than that of the plasma flows
on either side of it; hence, in the frame of the shock,

(δBseed)rs = Γrs(1− βrsβ4)δBseed '
δBseed

2Γrs
. (110)

The secondary modes propagating downstream of the shock
have amplitudes

(δB3)rs = Fshock(Srs) (δBseed)rs;

(δE3)rs = βg,3 (δB3)rs, (111)
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where the strength factor Srs of the reverse shock is given by
Equation (94). Boosting back to the frame of the star gives
the simple result

δB3 = Γrs(1 + βrsβg,3)(δB3)rs

' Fshock(Srs) δBseed. (112)

The observed frequency of the downstream X-mode and O-
mode are, similarly,

ω3 ' ω4 = Γ4ck̃seed. (113)

7 IRREGULAR MAGNETAR OUTFLOW

An irregular outflow from a magnetar provides a context
for the shock emission mechanism described in Sections 5
and 6. We will estimate the Lorentz factor, magnetization,
and plasma frequency of the outflow (which naturally lies in
the radio band). The formation and maintenance of inter-
nal shocks is considered, emphasizing the interaction with a
rotationally driven wind. These results are used in Section
8 to compare the shock-induced O-mode emission with the
intrinsic maser-induced emission in the orthogonal X-mode.

7.1 Acceleration of a Single Shell

Consider an expanding plasma shell whose energy is dom-
inated by a non-radial electromagnetic field, (Bφ, Eθ) in
spherical coordinates. As the shell is released, its E × B
frame move transrelativistically outward. In the near zone,
the stretched poloidal magnetic field connecting to the mag-
netar has a significant effect on the shell dynamics, with
Br ∼ Bφ at r ∼ r0. The gyrational frequency of the e±

embedded in the shell is several orders of magnitude larger
than the expansion rate, meaning that the bulk velocity is
nearly identical to the E ×B drift velocity of the embedded
charges,

β ' EθBφ
B2

r̂ − EθBr
B2

θ̂ ' Eθ
Bφ

r̂ − Br
Bφ

θ̂. (114)

At large magnetization, this drift quickly becomes relativis-
tic, implying a radial drift Lorentz factor

Γ =
1√

1− β2
r

∼ Bφ
Br
∼ r

r0
. (115)

The bulk Lorentz factor increases linearly with radius until
saturating at (Buckley 1977; Cerutti et al. 2020)

Γsat ∼ σ1/3
0 . (116)

The initial magnetization σ0 depends on the plasma state,
which will differ significantly between a quiescent state with
voltage set by the flow of corotation charge, and a bursting
state that sustains a broad spectrum of current perturbations.
The shell emitted during an outburst is taken to have a

total energy E , with a fraction εγ carried by photons, and
a radial thickness ∆r ∼ c∆t, where ∆t is a characteristic
duration (e.g. of X-rays emitted at a modest distance from the
magnetar). The electromagnetic compactness at the release
radius r0 ∼ ∆r is

`B0 =
σTE

mec24πr2
0

= 7.2× 104 E39

(∆t−3)3
. (117)

The effective black body temperature (5) is too low for a

significant accumulation of e± in local thermodynamic equi-
librium.
In this situation, thermalization in the e± plasma is incom-

plete (Thompson & Gill 2014; Beloborodov 2021a). The scat-
tering depth that develops depends on the relative propor-
tions of energy deposited in thermal and non-thermal pairs.
For illustration, we assume that heating stops shortly after
the release at radius r0. Then annihilation regulates the scat-
tering optical depth in cold e± to τT,0 = O(10). The initial
magnetization, as defined by the e± inertia, is

σ0 =
`B0

τT,0
. (118)

For a brief interval, the effective magnetization controlling
the acceleration of the shell is substantially smaller, σ ∼ ε−1

γ ;
this phase ends as the photons begin to stream freely with
respect to the pairs.
As the E × B frame accelerates outward, the comoving

magnetic field scales as B′(r) = B/Γ ∝ (r/r0)−1Γ−1 ∼
(r/r0)−2 and the pair density as n±(r) ∝ (r/r0)−2Γ−1 ∼
(r/r0)−3. The magnetization decreases as

σ(r) =
(B′)2

4πn±mec2
=
σ0

Γ
∼ σ0

(
r

r0

)−1

(119)

before also saturating at

σsat ∼ σ2/3
0 = 370

E2/3
39

(∆t−3)2(τT,0)
2/3
1

(120)

at a radius rsat ∼ σ1/3
0 r0. The peak Lorentz factor of the shell

material can reach a much higher value ∼ 2σ0, e.g., near its
forward edge (Lyutikov 2010; Granot et al. 2011).
With some delay, the drift Lorentz factor averaged over

the shell continues to increase slowly. This involves the trans-
fer of a small fraction of the Poynting luminosity to the ki-
netic energy of the charges; the relative fractional change in
Poynting flux and momentum flux carried by the large-scale
electromagnetic field scales as ∼ σ0/Γ

3. The delayed acceler-
ation sets in around where the shell regains causal contact,
beyond the radius r ∼ σ

2/3
0 r0 ∼ σ

1/3
0 rsat where the comov-

ing time t′ = r/Γsatc exceeds the light-crossing time ∆r′/c =
Γsat∆r/c. Beyond this point, Γ′(t′) ∼ (σsatct

′/∆r′)1/3 in a
frame moving with Lorentz factor Γsat and

Γ(r) ∼ ΓsatΓ
′ ∼

(
σ0

r

r0

)1/3 (
r > σ

2/3
0 r0

)
(121)

in the frame of the magnetar (Granot et al. 2011). The shell
thickness remains approximately constant as long as Γ� σ0

and the energy flux is dominated by the large-scale elec-
tromagnetic field; hence, the shell-averaged magnetization
slowly declines,

〈σ〉(r) ∼ σ0

Γ
∼ σsat

(
r

r0

)−1/3

. (122)

7.2 Rotationally-Driven Wind

A burst shell may decelerate through its interaction with a
rotationally-driven wind, or with another shell whose trajec-
tory is influenced by the wind. In a first approximation, this
wind is quasi-steady, maintaining a nearly uniform magne-
tization σw and asymptotic Lorentz factor ∼ σ

1/3
w (Buckley
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1977; Cerutti et al. 2020). A wind luminosity Lw corresponds
to a cross-field voltage Φ ∼ (Lw/c)

1/2 and magnetization

σw ∼
eΦ

M±γ±mec2
= 1× 104 L

1/2
w,36

(M±)4(γ±/30)
. (123)

Here γ± is the Lorentz factor of secondary e± produced in a
cascade in the open magnetar circuit andM± is the number
of such charges per primary corotation charge.
In common with a more luminous burst shell, this wind

carries a combed-out radial magnetic field. The Lorentz factor
of its E × B frame increases linearly with radius, starting
from a larger launching radius rw0 ∼ c/Ω and saturating at
Γw ∼ σ

1/3
w at a radius ∼ σ

1/3
w rw0. Here Ω is the angular

frequency of rotation of the star.

7.3 Interaction between Burst Shell and Wind

A burst shell expands into the rotationally-driven wind from
a launch radius r0 � rw0 (corresponding to a magnetar spin
period much greater than a millisecond). The shell experi-
ences negligible drag in the outer corotating magnetosphere,
where B(r) ∼ r−3. Whether the shell Lorentz factor Γburst

saturates before it encounters the wind depends on its initial
magnetization σburst,0 and the spin rate of the star; saturation
occurs first if σburst,0 . (Ω∆t)−3 ∼ 4× 106 (P/s)3 (∆t−3)−3.
In either case, the shell will move differentially with respect
to the wind in the inner zone where the wind is accelerating
outward, as well as in the saturation zone at r > σ

1/3
w rw0.

A forward/reverse shock structure forms in the shell as it
propagates into the base of the wind. Here, Γburst can eas-
ily satisfy the bound (95) for a reverse shock to develop. For
example, taking LP,1 = Lw ∼ 1036 erg s−1 and a shell lumi-
nosity LP,4 = Lburst ∼ 1041 erg s−1, this bound corresponds
to Γ4 = Γburst ∼ σ1/3

burst,0 > Γ4,min, where

Γ4,min(r) ∼
(
Lburst

Lwind

)1/4

Γw

∼ 30
L

1/4
burst,42

L
1/4
w,36

min

[
r

rw0
, σ

1/3
w0

]
. (r > rw0)

(124)

In practice, the shell is inhomogeneous and the expansion
Lorentz factor increases strongly near its forward edge, reach-
ing a maximum value ∼ 2σburst,0 when propagating into a
vacuum (Granot et al. 2011). This is easily large enough to
sustain a reverse shock in the interior of the shell as the exter-
nal wind Lorentz factor increases with r. At first, the increase
in Γw gives the forward part of the burst shell more room for
expansion, and the shock structure drifts toward the front.
After Γw saturates, the average of Γburst over the spreading
shell continues to increase and the shock structure then be-
gins to move backward with respect to the front of the shell.
The radius at which this process is completed can be esti-

mated by matching Equation (121) with the critical Lorentz
factor (124),

rrs ∼ σw
σburst,0

(
Lburst

Lw

)3/4

r0

= 1× 1012 σw
σburst,0

L
3/4
burst,41

L
3/4
w,35

∆t−3 cm. (125)

The Lorentz factor of the contact layer depends weakly
on the distribution of Lorentz factor interior to the reverse
shock (see Equation (88)). The magnetic field strength as
measured in the frame of the star also does not vary much
across the reverse shock (Bc ' B4 in the two-shell model).
After passage of the reverse shock through the shell, the layer
of shocked material (extending to both sides of the contact)
has a thickness

∆rshocked ' 2c∆t. (126)

From this point outward, a rarefaction wave propagates for-
ward, reaching the front of the shell at a radius

rdecel '
∆rshocked

1− βc
' 4Γ2

1

(
LP,4

LP,1

)1/2

r0. (127)

Here, we have substituted Equation (88) for the Lorentz fac-
tor of the shocked shell material and taken r0 ∼ c∆t.
The burst shell decelerates outside the radius (127). A con-

crete example is a rotationally driven wind with magnetiza-
tion σw ∼ 104, reaching a Lorentz factor Γ1 = Γw ∼ σ

1/3
w ∼

20. Then

rdecel ∼ 5× 1013 σ
2/3
w,4

L
1/2
burst,41

L
1/2
w,35

∆tburst,−3 cm. (128)

Whether or not deceleration is accompanied by a persis-
tent reverse shock depends on whether rrs is greater than
or smaller than rdecel, which depends in turn on the relative
magnetization of the wind and the burst shell.

7.4 Two Closely Spaced Burst Shells

Consider, finally, the ejection of two relativistic shells, A and
B, with comparable luminosities and durations, separated
by an interval ∆tAB . When ∆tAB ∼ ∆t (the shell duration),
the two shells are not separated by a significant rotationally-
driven wind phase. Some material in the second shell will
move forward over a distance ∼ 2Γ2

c,Ac∆t (where Γc,A is
the Lorentz factor of the contact in the first shell). Because
LP,A ∼ LP,B , the equilibrium Lorentz factor of the material
in the second shell is comparable to the Lorentz factor that
the first shell attains in its interaction with an outer wind
zone, Γc,B ∼ Γc,A. The interaction between the two shells is
therefore concentrated at the same radius rdecel,A that the
first shell decelerates.
Alternatively, when ∆tAB � ∆t, the second shell also en-

counters the wind and its dynamics is similar to that of the
first shell.

8 SUMMARY AND COMPARISON OF
EMISSION CHANNELS

We have described a simple linear mechanism producing
bright coherent radio emission in a relativistic outflow from
a magnetar – or other compact star – with a dynamic mag-
netic field. When the magnetization of the outflow is very
high, there is a near degeneracy between subluminal and su-
perluminal expansion. Small-scale structure that is imprinted
into the magnetic field near the base of the outflow becomes
frozen by the expansion and, at a much greater distance from
the star, is directly transformed to superluminal radiation by
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a shock. In the case of magnetars, strong independent ev-
idence for the presence of small-scale currents during out-
bursts comes from the observation of fireball radiation in the
X-ray band.
The observed flux of O-mode photons is concentrated

around the plasma frequency when the seed perturbations
have a smooth powerlaw spectrum. This emission occurs
downstream of the shock, where the ordinary wave has a
trans-relativistic group speed when k̃2d2 = O(1).
The two-stage emission mechanism described here has two

substantial advantages over direction emission within a tur-
bulent magnetofluid. First, turbulent energy is retained and
stored below a critical wavenumber, instead of being contin-
uously channeled into particles. Second, the direct emission
of fast waves by non-linear coupling to a broad spectrum
of Alfvén waves becomes inefficient at a high wavenumber,
where the Alfvén waves are anisotropic.
As we now demonstrate, this emission channel can compete

with or dominate the intrinsic maser instability of the shock
(Plotnikov & Sironi 2019; Sironi et al. 2021). It is weakly sen-
sistive to the strength of the shock and operates efficiently
when the upstream plasma is relativistically hot, in contrast
with the maser (Babul & Sironi 2020). Strong linear polar-
ization is a natural property of the linear conversion of a
stretched magnetic perturbation to an ordinary wave, but in
a direction orthogonal to that produced by the X-mode maser
emission.
A shock propagating through a plasma with extreme mag-

netization acts as a very weak reflector, because the plasma
flow is relativistic on both sides of the shock. The amplitude
of the reflected X-mode, as observed in the frame of the star,
is found to be minuscule compared to both the downstream
ordinary wave and the maser-induced extraordinary wave.

8.1 Direct Comparison of Linear O-mode Emission
with the X-mode Maser

We conclude by comparing the brightness of (i) O-mode ra-
diation that emerges downstream of a shock in a relativistic
magnetar outflow and (ii) the intrinsic X-mode maser emis-
sion from the same shock.
The O-mode flux emerging from the shock is, in the frame

of the star

FP,O =
δEOδBO

4π
c ' S4

[
1− |β̃g,2|
1 + |β̃g,2|

]2
δB2

seed

4π
c. (129)

Here, as in Equation (100), S = (LP4/LP1)1/4 is the ratio
of Lorentz factors across the forward shock that is driven by
an outflow of luminosity LP4 into a less luminous outflow
of luminosity LP1. The power released in the frame of the
star peaks around k̃2d2 ∼ 1: here, β̃g,2 is the group speed of
the downstream ordinary mode, which is β̃g,2 = 1/

√
2 when

k̃2d2 = 1. Finally, the energy carried by the seed Alfvenic
turbulence of radial wavenumber k, which triggers O-mode
radiation of frequency ω ' ck, can be estimated as

FP,seed

FP,1
=
δB2

seed

B2
1

∼ (ω∆t)1−α (130)

for a spectrum of seed Alfvénic turbulence as given by Equa-
tion (1).
Assuming that the upstream pairs are subrelativistic, the

X-mode output of the maser instability is (Plotnikov & Sironi
2019)

(FP,X)fs =
εmaser

σ2
1

(B1)2
fs

4π
c (131)

in the frame of the forward shock; here, the coefficient
εmaser ' 7×10−4. The radiative flux transforms by a Doppler
factor ' (2Γfs)

2 ' 4σ1S2 into the frame of the magnetar;
hence

FP,X '
4εmaser

σ1
S2B

2
1

4π
c. (132)

The X-mode radiation that is radiated forward of the shock
in response to an incoming isobaric mode is tiny compared
with this (Section 6.2.2).
Comparing the two radiation sources, we have

FP,X

FP,O
' 4εmaser

σ1S2

[
1− |β̃g,2|
1 + |β̃g,2|

]−2

(ω∆t)α−1. (133)

Taking a spectral index α = 3/2, this works out to

FP,X

FP,O
' 2

ν
1/2
9 (∆t−3)1/2

(σ1/10)(LP,4/102LP,1)1/2
(134)

at a downstream wavenumber k̃2d2 ∼ 1.
The frequency of this dominant O-mode radiation falls in

the 100 MHz-GHz range. For example, a collision between
two shells of luminosity ratio LP,4/LP,1 ∼ 102 produces a
forward shock with strength parameter S ∼ 3. The consider-
ations of Section 7.3 showed that the collision between may be
completed a radius ∼ 1013 cm. The Lorentz boosted plasma
frequency in the shells is (starting from a Thomson depth
τT ∼ 10 at emission)

Γωp
2π

= 190
(∆t−3)1/2

r13

(τT,0
10

)1/2

MHz. (135)

The O-mode frequency downstream of the forward shock that
is sourced by an Alfvén mode of wavenumber k̃1 ∼ ωp/c is,
from Equation (103), larger by a factor ∼ S2[(1−|β̃g,2|)/(1+

|β̃g,2|)] ∼ 1.7(LP,4/102 LP,1)1/2.

8.2 Constraint from Induced Compton Scattering

Induced scattering sets a firm limit on the brightness of the
radio emission generated at internal shocks in an electromag-
netic outbursts of the luminosity considered here. (See Wil-
son & Rees 1978 and Wilson 1982 for analogous constraints
on the plasma flow from radio pulsars.) In the emission zone,
the comoving energy deposited in radio waves is much smaller
than the enthalpy of the frozen e±: δB2

O/B
2 � 1/σ. As a re-

sult, the e± are able to absorb the radio waves with minimal
increase in internal energy.
The optical depth downstream of the shock is

τind ∼ σTn2
r

Γ2
·
(

Tb

mec2

)
(∆Ω̃O)2. (136)

Here, ∆Ω̃O is the solid angle of O-mode photons in the co-
moving frame downstream of the shock; one factor arises from
a phase-space integral, and the second from the fact that τind

is proportional to the Compton recoil frequency. The O-mode

MNRAS 000, 1–23 (2022)



Direct Emission of Strong Radio Pulses 19

brightness temperature is related to the ordinary wave am-
plitude by

4πTb

(
ω̃2,O

2πc

)3

∆Ω̃O ∼
δB̃2

2,O

4π
. (137)

Normalizing ω̃2,O to the downstream plasma frequency, we
note that

LO ' Γ2
2(1− |β̃φ,2|)2δB̃2

2,O r
2c (138)

and 2πν2,O ' Γ2(1− |β̃φ,2|)ω̃2,O = SΓ1(1− |β̃φ,2|). The solid
angle subtended by the ordinary wave is limited by the flat-
ness of the shock. Estimating

∆Ω̃O ∼ π
(
ω̃2,O

ωc,2

)2

∼ π

σ2

(
ω̃2,O

ωp,2

)2

, (139)

we find

τind ∼ σTLO

32mec3r

mec
3/νOe

2

σ1(SΓ1)2(1− |β̃φ,2|)

∼ 0.9LO,37

S2νO,9r14(1− |β̃φ,2|)

(σ1

10

)−1
(

Γ1

103

)−2

.

(140)

The optical depth to induced scattering of photons in
the X-mode is smaller by a factor (ω̃2/ωc,2)2(LX/LO) ∼
σ−1

2 (LX/LO).

8.3 Extension to High Burst Energies

We have normalized the total energy released by a bursting
magnetar in a millisecond period to the value E ∼ 1038−39 erg
appropriate for the radio-emitting pulses of SGR 1935+2154.
Considerably higher luminosities are, of course, associated
with magnetar giant flares (Kaspi & Beloborodov 2017). We
conclude by considering how the efficiency of shock-induced
radio emission depends on E .
Over a wide range of E , we still expect the scattering depth

in e± pairs at the base of the outflow to be limited by annhi-
lation, τT,0 ∼ 10. The compactness and magnetization also
increase in proportion to E , as does the magnetization in the
dissipation zone. This implies an increased output in O-mode
brightness relative to the X-mode maser (Equation (134)).
On the other hand, Alfvén turbulence of a fixed wavenum-

ber k⊥ ∼ kr and coupling strength k⊥δBθ/k‖Bφ carries a cur-
rent density δJφ ∼ (c/4π)k⊥δBθ ∝ E1/2. After these modes
are frozen by the expansion, the ratio of δJφ to the maximum
current that can be supplied by the advected charges scales
as

δJφ
en±c

∝ E
1/2

τT,0

r

Γ
. (141)

If this ratio reaches unity before the plasma experiences a
shock, then the advected modes experience ohmic damping.
We conclude that the emission radius shrinks and the cor-
responding plasma frequency increases with E , ωp ∝ E1/2.
There is therefore only a limited range of burst energy from
which shock-induced ordinary wave radiation in the 100 MHz-
GHz range can be released, approximately 1037 . E . 1041

erg.
Induced scattering of the emitted radio waves by the rem-

nant e± fireball pairs sets an additional constraint on the

brightness of the radio waves (Equation 140). If the interac-
tion sourcing these waves is between two shells that started
in a fireball state, then the escaping radio flux is proportional
to S2σ1Γ1. We have seen that the magnetization and Lorentz
factor at a fixed radius increases with the Poynting luminos-
ity LP (e.g. Equation (122). Thus, induced scattering by itself
does not rule out radio luminosities higher than was observed
from SGR 1935+2154 if the underlying flare luminosity was
also higher.
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APPENDIX A: RELATIVISTIC MHD SHOCK

This Appendix reviews the jump of flow variables across a
planar shock in a relativistically magnetized plasma. We de-
rive a simple relation between the Lorentz factors on the up-
stream and downstream sides, which can be used to quantify
the strength of the shock in astrophysical applications. Al-
though the magnetization in the upstream flow is assumed
to be high, σ = B2/4πγ2w � 1, we allow for an arbitrary
shock strength. The formulae obtained complement the usual
analytic approximation positing a strong shock with arbitrary
magnetization (Kennel & Coroniti 1984; Zhang & Kobayashi
2005).
The upstream and downstream flows are labelled 1 and 2.

The magnetic field B is assumed to run parallel to the shock
surface; the comoving enthalpy density w includes the con-
tribution from rest energy. In this situation, the flow speed
βc closely approaches the speed of light on both sides of the
shock and the magnetization remains large on on the down-
stream side. The mean electric field is directed transverse to
the flow, E = −β ×B, with magnitude |E| = βB. We work
in the frame where the four-velocity u = γβ = β/

√
1− β2

vanishes along the shock surface.
The relativistic speed of the downstream flow is a conse-

quence of the slow variation with Lorentz factor of the ratio
ΠP/SP. Here SP = |E|Bc/4π = βB2c/4π is the Poynting
flux in the direction of the flow and ΠP = (B2 + E2)/8π =
(1+β2)B2/8π the electromagnetic momentum flux. The jump
condition E1 = E2 (as derived from Ampère’s law) implies

B2 =
β1

β2
B1. (A1)

Continuity of the particle flux nu (here n is comoving particle
density) also gives

n2 =
γ1β1

γ2β2
n1. (A2)

Balancing the total energy flux and momentum flux across
the shock further implies

γ1u1w1 + β1
B2

1

4π
= γ2u2w2 + β2

B2
2

4π
(A3)
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and

u2
1w1 + P1 +

B2
1

8π
= u2

2w2 + P2 +
B2

2

8π
. (A4)

Here, P is the (comoving) thermal pressure.
Working in the regime σ1 � 1 and γ1 � 1, we take the

difference of Equations (A3) and (A4). The kinetic terms on
the left-hand side nearly cancel: the term P1 ∝ 1/σ1 and the
other difference terms scale as 1/γ2

1 . Hence a strong shock
requires γ2

1 � σ1. The derivation is simplified by the assump-
tion of a relativistically hot upstream flow, corresponding to
w1 = 4P1; this guarantees that the downstream flow is also
hot, even if the shock is weak.
Expanding in powers of 1/γ2

1 and 1/γ2
2 , one finds to leading

order

w2 ' w1 +
B2

1

2π

[(
1− β1

β2

)2

− 2(1− β1)

(
1− β1

β2

)]

' w1 +
B2

1

8π

(
1

γ4
2

− 1

γ4
1

)
. (A5)

Substituting this expression for w2 into either Equation (A3)
or (A4) gives, to the same order,

(
γ2

1 − γ2
2

) [(γ1

γ2

)2

+
1

2
− γ2

1

σ1

]
= 0. (A6)

One solution to this equation corresponds to a continuous
flow, and the other to a shock jump

1

γ2
2

=
1

σ1
− 1

2γ2
1

(
σ1 � 1; γ1 >

√
3σ1

2

)
. (A7)

The solution for w2 is found by substituting this expression
into Equation (A5).
The downstream Lorentz factor is seen to vary only over a

narrow range, σ1/2
1 < γ2 < γφ,X(σ1) = (3σ1/2)1/2 (see Equa-

tion (54)). The shock is weak, γ1/γ2 & 1, when the upstream
flow moves only slightly faster than the fast magnetosonic
mode. The strong-shock asymptote is

γ2 ' σ1/2
1 ; w2 '

B2
1

8πσ2
1

. (A8)

so that

w2 '
1

2

(
γ1

γ2

)2

w1 � w1;
w2

n2
'
(
γ1

2γ2

)
w1

n1
. (A9)

The downstream magnetization is even larger than on the
upstream side:

σ2 =
B2

2

4πγ2
2w2

' 2γ2
2 ' 2σ1. (A10)

Although the comoving temperature rises behind the shock,
so does the comoving magnetic flux density B2/γ2.

APPENDIX B: ELECTROMAGNETIC MODES:
TRANSVERSE PROPAGATION

We now review the dispersion relations of the ordinary and
extraordinary electromagnetic modes (O-mode and X-mode)
in a strongly magnetized and relativistic e± plasma. Along
the way, we obtain relations between the wave variables that
are needed in the study of shock perturbations in Section 5.

We consider only a charge-balanced e± gas and assume that
the background plasma is at rest. The dispersion relations in
a plasma in uniform motion are easily obtained by applying
a Lorentz boost to the results obtained below (see Section 4).
The X-mode can be given a hydromagnetic description at

frequencies below the particle gyrofrequency, being identified
with the compressive fast magnetosonic mode. The O-mode
propagates only above the plasma frequency and is effectively
incompressible because the magnetic perturbation δB ⊥ B.
The O-mode may be excited at a shock by a frozen, transverse
perturbation (essentially, a low-frequency Alfvén mode) that
is advected with the upstream plasma. The compressible X-
mode is excited when a zero-frequency isobaric mode (entropy
mode) collides with the shock.
In our study of shock perturbations, the mean magnetic

field runs parallel to the shock surface and the mode wavevec-
tor k points normal to this surface and to B (see Section 4).
We choose coordinates k = k x̂ and B = B ŷ. The perturba-
tion is Fourier decomposed as

δX = δX0e
i(kx−ωt);

δX ≡ {δB, δE, δβ, δP, δn}. (B1)

The electric and magnetic perturbations are related by Fara-
day’s law,

δB =
c

ω
k × δE =

1

βφ
x̂× δE. (B2)

The phase speed βφ = ω/ck can have either sign.
Positive and negative charges are oppositely accelerated

along δE, gaining a quiver velocity ±βE , but experience a
Lorentz force (±e)(±δβE)×B of the same sign:

δβ± = ±δβE + δβE×B . (B3)

The current is

δJ = en+δβ+ − en−δβ− = enδβE . (B4)

where n = n+ + n− is the total space density of positrons
and electrons. The corresponding Maxwell equation is

−iωδE = −4πδJ + ikc(x̂× δB). (B5)

We treat the positive and negative particles as fluids with
the same space density, pressure, enthalpy density w, and
effective mass

M =
w+

n+c2
=

w−
n−c2

=
w

nc2
. (B6)

The inertial mass density is nM = w/c2. The linearized mo-
mentum equations for positrons and electrons,

w±
c

∂(δβ±)

∂t
= ±en± (δE + δβ± ×B)−∇δP±. (B7)

Here, e is the magnitude of the electron charge. The pres-
sure gradient is evaluated in the adiabatic approximation,
∂P/∂x = (∂P/∂n)S · ∂n/∂x. Combining this with the lin-
earized continuity equation,10

∂(δn)

∂t
= −nc∂(δβx)

∂x
, (B8)

10 Creation and annihilation of e± pairs is negligible over the wave
period.
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the sound speed is given by

c2s =
1

M

(
∂P

∂n

)
S

. (B9)

The case of a relativistic e± gas corresponds to w = 4P ,
cs = c/

√
3 and (when the distribution function is thermal)

M = 4kT/c2.
We now examine separately the two transverse electromag-

netic modes propagating perpendicular to B.

B1 X-mode (Fast Magnetosonic Mode)

The X-mode carries an electric perturbation directed along
k ×B; hence,

k = k x̂; δE = δE ẑ; δB = δB ŷ; (X) (B10)

δβE×B = δβE×B x̂. (X) (B11)

The momentum equations (B7), written in terms of the vari-
ables (B3), are

∂(δβE)

∂t
=

e

Mc
(δE + δβE×B B); (B12)

∂(δβE×B)

∂t
= − eB

Mc
δβE −

1

Mnc

∂(δP )

∂x
. (B13)

Here, δP = δP+ + δP−.
We next substitute Equations (B1) and (B10) into Equa-

tions (B2), (B5), (B8) and (B13) to get following relations
between flow variables

δβE = i

(
ω2 − c2k2

4πenc

)
δE

ω
= iσ1/2

(
ω2 − c2k2

ωωp

)
δE

B
; (B14)

δβE×B = σ

(
ω2 − c2k2

ω2 − c2sk2

)
δE

B
. (B15)

Here, σ = B2/4πnMc2; the effective plasma frequency and
cyclotron frequency are

ωp =

(
4πne2

M

)1/2

; ωc =
eB

Mc
= σ1/2ωp. (B16)

The dispersion relation is obtained by substituting Equa-
tions (B14) and (B15) into Equation (B12),

ω2 − c2k2 = −
ω2
p(ω2 − c2sk2)

ω2
c − ω2 + c2sk2

. (B17)

The mode is subluminal for ω . ωc; at low frequencies,
the dispersion relation approaches the familiar form given by
Equation (53). A separate superluminal branch asymptotes
to the unmagnetized dispersion relation

ω2 = c2k2 + ω2
p. (ω � ωc) (B18)

at high frequencies.
The e± are tied to the magnetic field at low frequencies.

Then, the mode quiver speed βE×B coincides with the quasi-
static E ×B drift speed,

δβE×B ' x̂ ·
δE ×B
B2

= −δE
B
, (B19)

as may be seen by substituting Equation (B17) in Equation
(B15). Hence

δβE×B ' βφ
δB

B
. (B20)

The transverse quiver is suppressed by a factor ∼ ω/ωc,

δβE ' i
(

1− c2s
c2

)(
ω

ωc

)
δE

B
. (B21)

B2 Low-frequency O-mode

The polarization of the O-mode is orthogonal to that of the
fast magnetosonic mode; hence

k = k x̂; δE = δE ŷ; δB = δB ẑ. (O) (B22)

The analysis is now much simpler, because the low-
frequency oscillation decouples from the Lorentz force. The
y-component of the momentum equation reduces to

∂(δβE)

∂t
=

e

Mc
δE; δβE = i

(ωc
ω

) δE
B
. (B23)

Combining this with the Faraday and Maxwell equations (B2)
and (B5) gives

ω2 = c2k2 + ω2
p. (B24)

The mode phase speed is superluminal,

βφ =

(
1 +

ω2
p

c2k2

)1/2

. (B25)

Particle gyromotion is excited in a distinct, high-frequency
branch of the dispersion relation, ω ∼ ωc.

B3 Very low-frequency Shear Alfvén Mode

The final mode considered in this Appendix has a much lower
frequency than the other two. Both the magnetic and electric
fluctuations are now transverse to B,

k = k (x̂+ εŷ) ; δE = δE x̂; δB = δB ẑ. (A) (B26)

The current supporting the magnetic fluctuation runs parallel
to B, as with the O-mode, but now the electric perturbation
only induces slow E ×B drift,

δβ± = ± kδB

4πen
B̂ + δβE×B

= ±σ1/2

(
kc

ωp

)
δB

B
ŷ +

δE

B
ẑ. (B27)

This mode is the very low-frequency limit of a shear Alfvén
wave propagating along B with phase speed βA = (1 +
1/σ)−1/2, parallel wavevector k‖ = εk � k, and a frequency
ω = βAck‖ which vanishes as ε→ 0. The electric fluctuation
is obtained from Faraday’s law,

δE = −βA δB x̂. (B28)

(One must include the small y-component of k in Equation
(B2) to obtain the correct answer.)
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APPENDIX C: MODE VARIABLES IN THE
SHOCK FRAME

In this Section, we translate into the (unperturbed) shock
frame the relations between mode variables described in Sec-
tion 4 and Appendix B. The subscripts A, I, O and X label
the frozen Alfvén mode, the isobaric mode, the ordinary elec-
tromagnetic mode, and the extraordinary mode (fast magne-
tosonic mode). As in the main text, a quantity labeled with
a tilde is evaluated in the plasma rest frame.
(1) Zero-frequency modes (A and I), ω̃A,I = 0. In the co-

moving frame, these modes have vanishing phase speed β̃φ;
hence their phase is tied to the mean flow in the shock frame:

βφ =
ω

ck
=

β̃φ + β

1 + ββ̃φ
= β. (A, I) (C1)

The electric perturbation transverse to k̃ also vanishes in the
plasma frame. Lorentz transforming to the frame of the shock,
the transverse magnetic perturbation is therefore δBA,I =
γδB̃A,I and

δBA,I

B
=
δB̃A,I

B̃
. (C2)

The electric perturbation in the shock frame is

δEA = −β x̂× δBA −
βA

γ
δBA x̂;

δEI = −β x̂× δBI. (C3)

The frozen A-mode carries a longitudinal electric field (‖ k̃)
that is invariant between frames and is preserved across the
shock; it contributes negligibly to the comoving electromag-
netic field downstream of the shock.
The isobaric mode has a finite pressure perturbation

δPI

P
= − B̃ δB̃I

4πP

= −σw
P

δB̃I

B̃
= −σw

P

δBI

B
. (C4)

The corresponding comoving density perturbation is

δnI

n
=
δPI

P
− δTI

T
. (C5)

The isobaric mode also has a vanishing velocity perturbation
in the comoving frame, and therefore in the shock frame:

δβI = δβ̃I = 0. (C6)

The frozen Alfvén mode is incompressible and so

δPA = δnA = 0. (C7)

Upstream of the shock, the differential e± drift along B̃ sup-
ports a current perturbation that satisfies the steady Maxwell
equation. Translating Equation (B27) to the shock frame
gives

δβy,A =
1

γ3

kAδBA

4πen
. (C8)

This mode has vanishing δβ̃ along k̃ (see Equation (B27)),
consistent with its being tied to the mean flow.
2. Finite-frequency modes (O and X). Now the mode sup-

ports an electric perturbation in the plasma rest frame,

δẼ = −β̃φ x̂× δB̃. (C9)

The mode phase speed β̃φ = ω̃/ck̃ is given by Equations (48)
and (53) in the comoving frame; translating to the shock
frame gives

1− βφ '
1− β̃φ

2γ2(1 + β̃φ)
. (γ � 1) (C10)

The electric and magnetic perturbations are both transverse
to k, and are related by Equation (46) in both the plasma
frame and the shock frame. In the (unperturbed) shock frame,
the electromagnetic perturbation is is transformed to

δB = γ(1 + ββ̃φ)δB̃; δE = −βφ x̂× δB. (O,X) (C11)

Hence,

δB

B
= (1 + ββ̃φ)

δB̃

B̃
' 2

δB̃

B̃
. (O,X) (C12)

The O-mode is incompressible; hence

δnO = δPO = 0. (C13)

The velocity perturbation is along B; Lorentz transforming
to the shock frame gives an expression identical in form to
Equation (B23),

δβy,O = i
(ωc
ω

) δE
B

= iβφ
(ωc
ω

) δB
B
. (C14)

The X-mode is compressible but adiabatic. The longitudi-
nal E ×B velocity perturbation shifts the Lorentz factor of
the upstream plasma flow,

γ → γ + δγX = γ + δβ̃Xu;

u → u+ δuX = u+ δβ̃Xγ. (C15)

This kinetic perturbation is not present in the I, A, or O
modes – in these cases, δβ = 0. The equation of continuity
(Equation (B8)) implies

δnX

n
=

δβ̃X

β̃φ,X
, (C16)

where from Equations (B19) and (B20),

δβ̃X = −δẼX

B̃
= β̃φ,X

δB̃X

B̃
. (C17)

Hence,

δnX

n
=

1

Γ

δPX

P
=

1

1 + ββ̃φ

δB

B
, (C18)

where Γ is the ratio of specific heats. Because the X-mode
is essentially a MHD wave at low frequencies (ω̃ � ωc), one
may also write E = −βx̂×B and perturb to get

δEX = −βδBX −
δβ̃X

γ2
B. (C19)

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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